ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnn0ass Unicode version

Theorem mulgnn0ass 13288
Description: Product of group multiples, generalized to  NN0. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgass.b  |-  B  =  ( Base `  G
)
mulgass.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgnn0ass  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )

Proof of Theorem mulgnn0ass
StepHypRef Expression
1 mndsgrp 13062 . . . . . . . 8  |-  ( G  e.  Mnd  ->  G  e. Smgrp )
21adantr 276 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  G  e. Smgrp )
32adantr 276 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  ( M  e.  NN  /\  N  e.  NN ) )  ->  G  e. Smgrp )
4 simprl 529 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  ( M  e.  NN  /\  N  e.  NN ) )  ->  M  e.  NN )
5 simprr 531 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  ( M  e.  NN  /\  N  e.  NN ) )  ->  N  e.  NN )
6 simpr3 1007 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  X  e.  B )
76adantr 276 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  ( M  e.  NN  /\  N  e.  NN ) )  ->  X  e.  B )
8 mulgass.b . . . . . . 7  |-  B  =  ( Base `  G
)
9 mulgass.t . . . . . . 7  |-  .x.  =  (.g
`  G )
108, 9mulgnnass 13287 . . . . . 6  |-  ( ( G  e. Smgrp  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
113, 4, 5, 7, 10syl13anc 1251 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  ( M  e.  NN  /\  N  e.  NN ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
1211expr 375 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  e.  NN )  ->  ( N  e.  NN  ->  (
( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
13 eqid 2196 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
148, 13, 9mulg0 13255 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
156, 14syl 14 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( 0 
.x.  X )  =  ( 0g `  G
) )
16 simpr1 1005 . . . . . . . . . 10  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  M  e.  NN0 )
1716nn0cnd 9304 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  M  e.  CC )
1817mul01d 8419 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( M  x.  0 )  =  0 )
1918oveq1d 5937 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( M  x.  0 ) 
.x.  X )  =  ( 0  .x.  X
) )
2015oveq2d 5938 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( M  .x.  ( 0  .x.  X
) )  =  ( M  .x.  ( 0g
`  G ) ) )
218, 9, 13mulgnn0z 13279 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  M  e.  NN0 )  -> 
( M  .x.  ( 0g `  G ) )  =  ( 0g `  G ) )
22213ad2antr1 1164 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( M  .x.  ( 0g `  G
) )  =  ( 0g `  G ) )
2320, 22eqtrd 2229 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( M  .x.  ( 0  .x.  X
) )  =  ( 0g `  G ) )
2415, 19, 233eqtr4d 2239 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( M  x.  0 ) 
.x.  X )  =  ( M  .x.  (
0  .x.  X )
) )
2524adantr 276 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  e.  NN )  ->  ( ( M  x.  0 ) 
.x.  X )  =  ( M  .x.  (
0  .x.  X )
) )
26 oveq2 5930 . . . . . . 7  |-  ( N  =  0  ->  ( M  x.  N )  =  ( M  x.  0 ) )
2726oveq1d 5937 . . . . . 6  |-  ( N  =  0  ->  (
( M  x.  N
)  .x.  X )  =  ( ( M  x.  0 )  .x.  X ) )
28 oveq1 5929 . . . . . . 7  |-  ( N  =  0  ->  ( N  .x.  X )  =  ( 0  .x.  X
) )
2928oveq2d 5938 . . . . . 6  |-  ( N  =  0  ->  ( M  .x.  ( N  .x.  X ) )  =  ( M  .x.  (
0  .x.  X )
) )
3027, 29eqeq12d 2211 . . . . 5  |-  ( N  =  0  ->  (
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) )  <->  ( ( M  x.  0 ) 
.x.  X )  =  ( M  .x.  (
0  .x.  X )
) ) )
3125, 30syl5ibrcom 157 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  e.  NN )  ->  ( N  =  0  ->  (
( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
32 simpr2 1006 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  N  e.  NN0 )
33 elnn0 9251 . . . . . 6  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
3432, 33sylib 122 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( N  e.  NN  \/  N  =  0 ) )
3534adantr 276 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  e.  NN )  ->  ( N  e.  NN  \/  N  =  0 ) )
3612, 31, 35mpjaod 719 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  /\  M  e.  NN )  ->  ( ( M  x.  N ) 
.x.  X )  =  ( M  .x.  ( N  .x.  X ) ) )
3736ex 115 . 2  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( M  e.  NN  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) ) )
3832nn0cnd 9304 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  N  e.  CC )
3938mul02d 8418 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( 0  x.  N )  =  0 )
4039oveq1d 5937 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( (
0  x.  N ) 
.x.  X )  =  ( 0  .x.  X
) )
418, 9mulgnn0cl 13268 . . . . . 6  |-  ( ( G  e.  Mnd  /\  N  e.  NN0  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
42413adant3r1 1214 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( N  .x.  X )  e.  B
)
438, 13, 9mulg0 13255 . . . . 5  |-  ( ( N  .x.  X )  e.  B  ->  (
0  .x.  ( N  .x.  X ) )  =  ( 0g `  G
) )
4442, 43syl 14 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( 0 
.x.  ( N  .x.  X ) )  =  ( 0g `  G
) )
4515, 40, 443eqtr4d 2239 . . 3  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( (
0  x.  N ) 
.x.  X )  =  ( 0  .x.  ( N  .x.  X ) ) )
46 oveq1 5929 . . . . 5  |-  ( M  =  0  ->  ( M  x.  N )  =  ( 0  x.  N ) )
4746oveq1d 5937 . . . 4  |-  ( M  =  0  ->  (
( M  x.  N
)  .x.  X )  =  ( ( 0  x.  N )  .x.  X ) )
48 oveq1 5929 . . . 4  |-  ( M  =  0  ->  ( M  .x.  ( N  .x.  X ) )  =  ( 0  .x.  ( N  .x.  X ) ) )
4947, 48eqeq12d 2211 . . 3  |-  ( M  =  0  ->  (
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) )  <->  ( (
0  x.  N ) 
.x.  X )  =  ( 0  .x.  ( N  .x.  X ) ) ) )
5045, 49syl5ibrcom 157 . 2  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( M  =  0  ->  (
( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
51 elnn0 9251 . . 3  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
5216, 51sylib 122 . 2  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( M  e.  NN  \/  M  =  0 ) )
5337, 50, 52mpjaod 719 1  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922   0cc0 7879    x. cmul 7884   NNcn 8990   NN0cn0 9249   Basecbs 12678   0gc0g 12927  Smgrpcsgrp 13044   Mndcmnd 13057  .gcmg 13249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-minusg 13136  df-mulg 13250
This theorem is referenced by:  mulgass  13289
  Copyright terms: Public domain W3C validator