| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgnn0ass | Unicode version | ||
| Description: Product of group
multiples, generalized to |
| Ref | Expression |
|---|---|
| mulgass.b |
|
| mulgass.t |
|
| Ref | Expression |
|---|---|
| mulgnn0ass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndsgrp 13454 |
. . . . . . . 8
| |
| 2 | 1 | adantr 276 |
. . . . . . 7
|
| 3 | 2 | adantr 276 |
. . . . . 6
|
| 4 | simprl 529 |
. . . . . 6
| |
| 5 | simprr 531 |
. . . . . 6
| |
| 6 | simpr3 1029 |
. . . . . . 7
| |
| 7 | 6 | adantr 276 |
. . . . . 6
|
| 8 | mulgass.b |
. . . . . . 7
| |
| 9 | mulgass.t |
. . . . . . 7
| |
| 10 | 8, 9 | mulgnnass 13694 |
. . . . . 6
|
| 11 | 3, 4, 5, 7, 10 | syl13anc 1273 |
. . . . 5
|
| 12 | 11 | expr 375 |
. . . 4
|
| 13 | eqid 2229 |
. . . . . . . . 9
| |
| 14 | 8, 13, 9 | mulg0 13662 |
. . . . . . . 8
|
| 15 | 6, 14 | syl 14 |
. . . . . . 7
|
| 16 | simpr1 1027 |
. . . . . . . . . 10
| |
| 17 | 16 | nn0cnd 9424 |
. . . . . . . . 9
|
| 18 | 17 | mul01d 8539 |
. . . . . . . 8
|
| 19 | 18 | oveq1d 6016 |
. . . . . . 7
|
| 20 | 15 | oveq2d 6017 |
. . . . . . . 8
|
| 21 | 8, 9, 13 | mulgnn0z 13686 |
. . . . . . . . 9
|
| 22 | 21 | 3ad2antr1 1186 |
. . . . . . . 8
|
| 23 | 20, 22 | eqtrd 2262 |
. . . . . . 7
|
| 24 | 15, 19, 23 | 3eqtr4d 2272 |
. . . . . 6
|
| 25 | 24 | adantr 276 |
. . . . 5
|
| 26 | oveq2 6009 |
. . . . . . 7
| |
| 27 | 26 | oveq1d 6016 |
. . . . . 6
|
| 28 | oveq1 6008 |
. . . . . . 7
| |
| 29 | 28 | oveq2d 6017 |
. . . . . 6
|
| 30 | 27, 29 | eqeq12d 2244 |
. . . . 5
|
| 31 | 25, 30 | syl5ibrcom 157 |
. . . 4
|
| 32 | simpr2 1028 |
. . . . . 6
| |
| 33 | elnn0 9371 |
. . . . . 6
| |
| 34 | 32, 33 | sylib 122 |
. . . . 5
|
| 35 | 34 | adantr 276 |
. . . 4
|
| 36 | 12, 31, 35 | mpjaod 723 |
. . 3
|
| 37 | 36 | ex 115 |
. 2
|
| 38 | 32 | nn0cnd 9424 |
. . . . . 6
|
| 39 | 38 | mul02d 8538 |
. . . . 5
|
| 40 | 39 | oveq1d 6016 |
. . . 4
|
| 41 | 8, 9 | mulgnn0cl 13675 |
. . . . . 6
|
| 42 | 41 | 3adant3r1 1236 |
. . . . 5
|
| 43 | 8, 13, 9 | mulg0 13662 |
. . . . 5
|
| 44 | 42, 43 | syl 14 |
. . . 4
|
| 45 | 15, 40, 44 | 3eqtr4d 2272 |
. . 3
|
| 46 | oveq1 6008 |
. . . . 5
| |
| 47 | 46 | oveq1d 6016 |
. . . 4
|
| 48 | oveq1 6008 |
. . . 4
| |
| 49 | 47, 48 | eqeq12d 2244 |
. . 3
|
| 50 | 45, 49 | syl5ibrcom 157 |
. 2
|
| 51 | elnn0 9371 |
. . 3
| |
| 52 | 16, 51 | sylib 122 |
. 2
|
| 53 | 37, 50, 52 | mpjaod 723 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-2 9169 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 df-fzo 10339 df-seqfrec 10670 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-minusg 13537 df-mulg 13657 |
| This theorem is referenced by: mulgass 13696 |
| Copyright terms: Public domain | W3C validator |