Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulgnn0ass | Unicode version |
Description: Product of group multiples, generalized to . (Contributed by Mario Carneiro, 13-Dec-2014.) |
Ref | Expression |
---|---|
mulgass.b | |
mulgass.t | .g |
Ref | Expression |
---|---|
mulgnn0ass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndsgrp 12684 | . . . . . . . 8 Smgrp | |
2 | 1 | adantr 276 | . . . . . . 7 Smgrp |
3 | 2 | adantr 276 | . . . . . 6 Smgrp |
4 | simprl 529 | . . . . . 6 | |
5 | simprr 530 | . . . . . 6 | |
6 | simpr3 1003 | . . . . . . 7 | |
7 | 6 | adantr 276 | . . . . . 6 |
8 | mulgass.b | . . . . . . 7 | |
9 | mulgass.t | . . . . . . 7 .g | |
10 | 8, 9 | mulgnnass 12873 | . . . . . 6 Smgrp |
11 | 3, 4, 5, 7, 10 | syl13anc 1238 | . . . . 5 |
12 | 11 | expr 375 | . . . 4 |
13 | eqid 2173 | . . . . . . . . 9 | |
14 | 8, 13, 9 | mulg0 12844 | . . . . . . . 8 |
15 | 6, 14 | syl 14 | . . . . . . 7 |
16 | simpr1 1001 | . . . . . . . . . 10 | |
17 | 16 | nn0cnd 9199 | . . . . . . . . 9 |
18 | 17 | mul01d 8321 | . . . . . . . 8 |
19 | 18 | oveq1d 5877 | . . . . . . 7 |
20 | 15 | oveq2d 5878 | . . . . . . . 8 |
21 | 8, 9, 13 | mulgnn0z 12865 | . . . . . . . . 9 |
22 | 21 | 3ad2antr1 1160 | . . . . . . . 8 |
23 | 20, 22 | eqtrd 2206 | . . . . . . 7 |
24 | 15, 19, 23 | 3eqtr4d 2216 | . . . . . 6 |
25 | 24 | adantr 276 | . . . . 5 |
26 | oveq2 5870 | . . . . . . 7 | |
27 | 26 | oveq1d 5877 | . . . . . 6 |
28 | oveq1 5869 | . . . . . . 7 | |
29 | 28 | oveq2d 5878 | . . . . . 6 |
30 | 27, 29 | eqeq12d 2188 | . . . . 5 |
31 | 25, 30 | syl5ibrcom 158 | . . . 4 |
32 | simpr2 1002 | . . . . . 6 | |
33 | elnn0 9146 | . . . . . 6 | |
34 | 32, 33 | sylib 122 | . . . . 5 |
35 | 34 | adantr 276 | . . . 4 |
36 | 12, 31, 35 | mpjaod 716 | . . 3 |
37 | 36 | ex 115 | . 2 |
38 | 32 | nn0cnd 9199 | . . . . . 6 |
39 | 38 | mul02d 8320 | . . . . 5 |
40 | 39 | oveq1d 5877 | . . . 4 |
41 | 8, 9 | mulgnn0cl 12855 | . . . . . 6 |
42 | 41 | 3adant3r1 1210 | . . . . 5 |
43 | 8, 13, 9 | mulg0 12844 | . . . . 5 |
44 | 42, 43 | syl 14 | . . . 4 |
45 | 15, 40, 44 | 3eqtr4d 2216 | . . 3 |
46 | oveq1 5869 | . . . . 5 | |
47 | 46 | oveq1d 5877 | . . . 4 |
48 | oveq1 5869 | . . . 4 | |
49 | 47, 48 | eqeq12d 2188 | . . 3 |
50 | 45, 49 | syl5ibrcom 158 | . 2 |
51 | elnn0 9146 | . . 3 | |
52 | 16, 51 | sylib 122 | . 2 |
53 | 37, 50, 52 | mpjaod 716 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wo 706 w3a 976 wceq 1351 wcel 2144 cfv 5205 (class class class)co 5862 cc0 7783 cmul 7788 cn 8887 cn0 9144 cbs 12425 c0g 12623 Smgrpcsgrp 12669 cmnd 12679 .gcmg 12839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 612 ax-in2 613 ax-io 707 ax-5 1443 ax-7 1444 ax-gen 1445 ax-ie1 1489 ax-ie2 1490 ax-8 1500 ax-10 1501 ax-11 1502 ax-i12 1503 ax-bndl 1505 ax-4 1506 ax-17 1522 ax-i9 1526 ax-ial 1530 ax-i5r 1531 ax-13 2146 ax-14 2147 ax-ext 2155 ax-coll 4110 ax-sep 4113 ax-nul 4121 ax-pow 4166 ax-pr 4200 ax-un 4424 ax-setind 4527 ax-iinf 4578 ax-cnex 7874 ax-resscn 7875 ax-1cn 7876 ax-1re 7877 ax-icn 7878 ax-addcl 7879 ax-addrcl 7880 ax-mulcl 7881 ax-addcom 7883 ax-mulcom 7884 ax-addass 7885 ax-mulass 7886 ax-distr 7887 ax-i2m1 7888 ax-0lt1 7889 ax-1rid 7890 ax-0id 7891 ax-rnegex 7892 ax-cnre 7894 ax-pre-ltirr 7895 ax-pre-ltwlin 7896 ax-pre-lttrn 7897 ax-pre-ltadd 7899 |
This theorem depends on definitions: df-bi 117 df-dc 833 df-3or 977 df-3an 978 df-tru 1354 df-fal 1357 df-nf 1457 df-sb 1759 df-eu 2025 df-mo 2026 df-clab 2160 df-cleq 2166 df-clel 2169 df-nfc 2304 df-ne 2344 df-nel 2439 df-ral 2456 df-rex 2457 df-reu 2458 df-rmo 2459 df-rab 2460 df-v 2735 df-sbc 2959 df-csb 3053 df-dif 3126 df-un 3128 df-in 3130 df-ss 3137 df-nul 3418 df-if 3530 df-pw 3571 df-sn 3592 df-pr 3593 df-op 3595 df-uni 3803 df-int 3838 df-iun 3881 df-br 3996 df-opab 4057 df-mpt 4058 df-tr 4094 df-id 4284 df-iord 4357 df-on 4359 df-ilim 4360 df-suc 4362 df-iom 4581 df-xp 4623 df-rel 4624 df-cnv 4625 df-co 4626 df-dm 4627 df-rn 4628 df-res 4629 df-ima 4630 df-iota 5167 df-fun 5207 df-fn 5208 df-f 5209 df-f1 5210 df-fo 5211 df-f1o 5212 df-fv 5213 df-riota 5818 df-ov 5865 df-oprab 5866 df-mpo 5867 df-1st 6128 df-2nd 6129 df-recs 6293 df-frec 6379 df-pnf 7965 df-mnf 7966 df-xr 7967 df-ltxr 7968 df-le 7969 df-sub 8101 df-neg 8102 df-inn 8888 df-2 8946 df-n0 9145 df-z 9222 df-uz 9497 df-fz 9975 df-fzo 10108 df-seqfrec 10411 df-ndx 12428 df-slot 12429 df-base 12431 df-plusg 12502 df-0g 12625 df-mgm 12637 df-sgrp 12670 df-mnd 12680 df-minusg 12739 df-mulg 12840 |
This theorem is referenced by: mulgass 12875 |
Copyright terms: Public domain | W3C validator |