ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsssn0 Unicode version

Theorem lsssn0 14328
Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss0cl.z  |-  .0.  =  ( 0g `  W )
lss0cl.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lsssn0  |-  ( W  e.  LMod  ->  {  .0.  }  e.  S )

Proof of Theorem lsssn0
Dummy variables  x  a  b  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2230 . 2  |-  ( W  e.  LMod  ->  (Scalar `  W )  =  (Scalar `  W ) )
2 eqidd 2230 . 2  |-  ( W  e.  LMod  ->  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
) )
3 eqidd 2230 . 2  |-  ( W  e.  LMod  ->  ( Base `  W )  =  (
Base `  W )
)
4 eqidd 2230 . 2  |-  ( W  e.  LMod  ->  ( +g  `  W )  =  ( +g  `  W ) )
5 eqidd 2230 . 2  |-  ( W  e.  LMod  ->  ( .s
`  W )  =  ( .s `  W
) )
6 lss0cl.s . . 3  |-  S  =  ( LSubSp `  W )
76a1i 9 . 2  |-  ( W  e.  LMod  ->  S  =  ( LSubSp `  W )
)
8 eqid 2229 . . . 4  |-  ( Base `  W )  =  (
Base `  W )
9 lss0cl.z . . . 4  |-  .0.  =  ( 0g `  W )
108, 9lmod0vcl 14275 . . 3  |-  ( W  e.  LMod  ->  .0.  e.  ( Base `  W )
)
1110snssd 3812 . 2  |-  ( W  e.  LMod  ->  {  .0.  } 
C_  ( Base `  W
) )
12 snmg 3784 . . 3  |-  (  .0. 
e.  ( Base `  W
)  ->  E. j 
j  e.  {  .0.  } )
1310, 12syl 14 . 2  |-  ( W  e.  LMod  ->  E. j 
j  e.  {  .0.  } )
14 simpr2 1028 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  a  e.  {  .0.  } )
15 elsni 3684 . . . . . . . 8  |-  ( a  e.  {  .0.  }  ->  a  =  .0.  )
1614, 15syl 14 . . . . . . 7  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  a  =  .0.  )
1716oveq2d 6016 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( x
( .s `  W
) a )  =  ( x ( .s
`  W )  .0.  ) )
18 eqid 2229 . . . . . . . 8  |-  (Scalar `  W )  =  (Scalar `  W )
19 eqid 2229 . . . . . . . 8  |-  ( .s
`  W )  =  ( .s `  W
)
20 eqid 2229 . . . . . . . 8  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
2118, 19, 20, 9lmodvs0 14280 . . . . . . 7  |-  ( ( W  e.  LMod  /\  x  e.  ( Base `  (Scalar `  W ) ) )  ->  ( x ( .s `  W )  .0.  )  =  .0.  )
22213ad2antr1 1186 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( x
( .s `  W
)  .0.  )  =  .0.  )
2317, 22eqtrd 2262 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( x
( .s `  W
) a )  =  .0.  )
24 simpr3 1029 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  b  e.  {  .0.  } )
25 elsni 3684 . . . . . 6  |-  ( b  e.  {  .0.  }  ->  b  =  .0.  )
2624, 25syl 14 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  b  =  .0.  )
2723, 26oveq12d 6018 . . . 4  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  =  (  .0.  ( +g  `  W )  .0.  )
)
28 eqid 2229 . . . . . . 7  |-  ( +g  `  W )  =  ( +g  `  W )
298, 28, 9lmod0vlid 14276 . . . . . 6  |-  ( ( W  e.  LMod  /\  .0.  e.  ( Base `  W
) )  ->  (  .0.  ( +g  `  W
)  .0.  )  =  .0.  )
3010, 29mpdan 421 . . . . 5  |-  ( W  e.  LMod  ->  (  .0.  ( +g  `  W
)  .0.  )  =  .0.  )
3130adantr 276 . . . 4  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  (  .0.  ( +g  `  W )  .0.  )  =  .0.  )
3227, 31eqtrd 2262 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  =  .0.  )
33 vex 2802 . . . . . . . 8  |-  x  e. 
_V
3433a1i 9 . . . . . . 7  |-  ( W  e.  LMod  ->  x  e. 
_V )
35 vscaslid 13191 . . . . . . . 8  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
3635slotex 13054 . . . . . . 7  |-  ( W  e.  LMod  ->  ( .s
`  W )  e. 
_V )
37 vex 2802 . . . . . . . 8  |-  a  e. 
_V
3837a1i 9 . . . . . . 7  |-  ( W  e.  LMod  ->  a  e. 
_V )
39 ovexg 6034 . . . . . . 7  |-  ( ( x  e.  _V  /\  ( .s `  W )  e.  _V  /\  a  e.  _V )  ->  (
x ( .s `  W ) a )  e.  _V )
4034, 36, 38, 39syl3anc 1271 . . . . . 6  |-  ( W  e.  LMod  ->  ( x ( .s `  W
) a )  e. 
_V )
41 plusgslid 13140 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4241slotex 13054 . . . . . 6  |-  ( W  e.  LMod  ->  ( +g  `  W )  e.  _V )
43 vex 2802 . . . . . . 7  |-  b  e. 
_V
4443a1i 9 . . . . . 6  |-  ( W  e.  LMod  ->  b  e. 
_V )
45 ovexg 6034 . . . . . 6  |-  ( ( ( x ( .s
`  W ) a )  e.  _V  /\  ( +g  `  W )  e.  _V  /\  b  e.  _V )  ->  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e. 
_V )
4640, 42, 44, 45syl3anc 1271 . . . . 5  |-  ( W  e.  LMod  ->  ( ( x ( .s `  W ) a ) ( +g  `  W
) b )  e. 
_V )
47 elsng 3681 . . . . 5  |-  ( ( ( x ( .s
`  W ) a ) ( +g  `  W
) b )  e. 
_V  ->  ( ( ( x ( .s `  W ) a ) ( +g  `  W
) b )  e. 
{  .0.  }  <->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  =  .0.  ) )
4846, 47syl 14 . . . 4  |-  ( W  e.  LMod  ->  ( ( ( x ( .s
`  W ) a ) ( +g  `  W
) b )  e. 
{  .0.  }  <->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  =  .0.  ) )
4948adantr 276 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e. 
{  .0.  }  <->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  =  .0.  ) )
5032, 49mpbird 167 . 2  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  e. 
{  .0.  } )
51 id 19 . 2  |-  ( W  e.  LMod  ->  W  e. 
LMod )
521, 2, 3, 4, 5, 7, 11, 13, 50, 51islssmd 14317 1  |-  ( W  e.  LMod  ->  {  .0.  }  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799   {csn 3666   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105  Scalarcsca 13108   .scvsca 13109   0gc0g 13284   LModclmod 14245   LSubSpclss 14310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-sca 13121  df-vsca 13122  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-mgp 13879  df-ring 13956  df-lmod 14247  df-lssm 14311
This theorem is referenced by:  lspsn0  14380  lsp0  14381  lidl0  14447
  Copyright terms: Public domain W3C validator