ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsssn0 Unicode version

Theorem lsssn0 14132
Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss0cl.z  |-  .0.  =  ( 0g `  W )
lss0cl.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lsssn0  |-  ( W  e.  LMod  ->  {  .0.  }  e.  S )

Proof of Theorem lsssn0
Dummy variables  x  a  b  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2206 . 2  |-  ( W  e.  LMod  ->  (Scalar `  W )  =  (Scalar `  W ) )
2 eqidd 2206 . 2  |-  ( W  e.  LMod  ->  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
) )
3 eqidd 2206 . 2  |-  ( W  e.  LMod  ->  ( Base `  W )  =  (
Base `  W )
)
4 eqidd 2206 . 2  |-  ( W  e.  LMod  ->  ( +g  `  W )  =  ( +g  `  W ) )
5 eqidd 2206 . 2  |-  ( W  e.  LMod  ->  ( .s
`  W )  =  ( .s `  W
) )
6 lss0cl.s . . 3  |-  S  =  ( LSubSp `  W )
76a1i 9 . 2  |-  ( W  e.  LMod  ->  S  =  ( LSubSp `  W )
)
8 eqid 2205 . . . 4  |-  ( Base `  W )  =  (
Base `  W )
9 lss0cl.z . . . 4  |-  .0.  =  ( 0g `  W )
108, 9lmod0vcl 14079 . . 3  |-  ( W  e.  LMod  ->  .0.  e.  ( Base `  W )
)
1110snssd 3778 . 2  |-  ( W  e.  LMod  ->  {  .0.  } 
C_  ( Base `  W
) )
12 snmg 3751 . . 3  |-  (  .0. 
e.  ( Base `  W
)  ->  E. j 
j  e.  {  .0.  } )
1310, 12syl 14 . 2  |-  ( W  e.  LMod  ->  E. j 
j  e.  {  .0.  } )
14 simpr2 1007 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  a  e.  {  .0.  } )
15 elsni 3651 . . . . . . . 8  |-  ( a  e.  {  .0.  }  ->  a  =  .0.  )
1614, 15syl 14 . . . . . . 7  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  a  =  .0.  )
1716oveq2d 5960 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( x
( .s `  W
) a )  =  ( x ( .s
`  W )  .0.  ) )
18 eqid 2205 . . . . . . . 8  |-  (Scalar `  W )  =  (Scalar `  W )
19 eqid 2205 . . . . . . . 8  |-  ( .s
`  W )  =  ( .s `  W
)
20 eqid 2205 . . . . . . . 8  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
2118, 19, 20, 9lmodvs0 14084 . . . . . . 7  |-  ( ( W  e.  LMod  /\  x  e.  ( Base `  (Scalar `  W ) ) )  ->  ( x ( .s `  W )  .0.  )  =  .0.  )
22213ad2antr1 1165 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( x
( .s `  W
)  .0.  )  =  .0.  )
2317, 22eqtrd 2238 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( x
( .s `  W
) a )  =  .0.  )
24 simpr3 1008 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  b  e.  {  .0.  } )
25 elsni 3651 . . . . . 6  |-  ( b  e.  {  .0.  }  ->  b  =  .0.  )
2624, 25syl 14 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  b  =  .0.  )
2723, 26oveq12d 5962 . . . 4  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  =  (  .0.  ( +g  `  W )  .0.  )
)
28 eqid 2205 . . . . . . 7  |-  ( +g  `  W )  =  ( +g  `  W )
298, 28, 9lmod0vlid 14080 . . . . . 6  |-  ( ( W  e.  LMod  /\  .0.  e.  ( Base `  W
) )  ->  (  .0.  ( +g  `  W
)  .0.  )  =  .0.  )
3010, 29mpdan 421 . . . . 5  |-  ( W  e.  LMod  ->  (  .0.  ( +g  `  W
)  .0.  )  =  .0.  )
3130adantr 276 . . . 4  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  (  .0.  ( +g  `  W )  .0.  )  =  .0.  )
3227, 31eqtrd 2238 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  =  .0.  )
33 vex 2775 . . . . . . . 8  |-  x  e. 
_V
3433a1i 9 . . . . . . 7  |-  ( W  e.  LMod  ->  x  e. 
_V )
35 vscaslid 12995 . . . . . . . 8  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
3635slotex 12859 . . . . . . 7  |-  ( W  e.  LMod  ->  ( .s
`  W )  e. 
_V )
37 vex 2775 . . . . . . . 8  |-  a  e. 
_V
3837a1i 9 . . . . . . 7  |-  ( W  e.  LMod  ->  a  e. 
_V )
39 ovexg 5978 . . . . . . 7  |-  ( ( x  e.  _V  /\  ( .s `  W )  e.  _V  /\  a  e.  _V )  ->  (
x ( .s `  W ) a )  e.  _V )
4034, 36, 38, 39syl3anc 1250 . . . . . 6  |-  ( W  e.  LMod  ->  ( x ( .s `  W
) a )  e. 
_V )
41 plusgslid 12944 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4241slotex 12859 . . . . . 6  |-  ( W  e.  LMod  ->  ( +g  `  W )  e.  _V )
43 vex 2775 . . . . . . 7  |-  b  e. 
_V
4443a1i 9 . . . . . 6  |-  ( W  e.  LMod  ->  b  e. 
_V )
45 ovexg 5978 . . . . . 6  |-  ( ( ( x ( .s
`  W ) a )  e.  _V  /\  ( +g  `  W )  e.  _V  /\  b  e.  _V )  ->  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e. 
_V )
4640, 42, 44, 45syl3anc 1250 . . . . 5  |-  ( W  e.  LMod  ->  ( ( x ( .s `  W ) a ) ( +g  `  W
) b )  e. 
_V )
47 elsng 3648 . . . . 5  |-  ( ( ( x ( .s
`  W ) a ) ( +g  `  W
) b )  e. 
_V  ->  ( ( ( x ( .s `  W ) a ) ( +g  `  W
) b )  e. 
{  .0.  }  <->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  =  .0.  ) )
4846, 47syl 14 . . . 4  |-  ( W  e.  LMod  ->  ( ( ( x ( .s
`  W ) a ) ( +g  `  W
) b )  e. 
{  .0.  }  <->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  =  .0.  ) )
4948adantr 276 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e. 
{  .0.  }  <->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  =  .0.  ) )
5032, 49mpbird 167 . 2  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  e. 
{  .0.  } )
51 id 19 . 2  |-  ( W  e.  LMod  ->  W  e. 
LMod )
521, 2, 3, 4, 5, 7, 11, 13, 50, 51islssmd 14121 1  |-  ( W  e.  LMod  ->  {  .0.  }  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772   {csn 3633   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909  Scalarcsca 12912   .scvsca 12913   0gc0g 13088   LModclmod 14049   LSubSpclss 14114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-sca 12925  df-vsca 12926  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-mgp 13683  df-ring 13760  df-lmod 14051  df-lssm 14115
This theorem is referenced by:  lspsn0  14184  lsp0  14185  lidl0  14251
  Copyright terms: Public domain W3C validator