| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lsssn0 | Unicode version | ||
| Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lss0cl.z |
|
| lss0cl.s |
|
| Ref | Expression |
|---|---|
| lsssn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2230 |
. 2
| |
| 2 | eqidd 2230 |
. 2
| |
| 3 | eqidd 2230 |
. 2
| |
| 4 | eqidd 2230 |
. 2
| |
| 5 | eqidd 2230 |
. 2
| |
| 6 | lss0cl.s |
. . 3
| |
| 7 | 6 | a1i 9 |
. 2
|
| 8 | eqid 2229 |
. . . 4
| |
| 9 | lss0cl.z |
. . . 4
| |
| 10 | 8, 9 | lmod0vcl 14275 |
. . 3
|
| 11 | 10 | snssd 3812 |
. 2
|
| 12 | snmg 3784 |
. . 3
| |
| 13 | 10, 12 | syl 14 |
. 2
|
| 14 | simpr2 1028 |
. . . . . . . 8
| |
| 15 | elsni 3684 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl 14 |
. . . . . . 7
|
| 17 | 16 | oveq2d 6016 |
. . . . . 6
|
| 18 | eqid 2229 |
. . . . . . . 8
| |
| 19 | eqid 2229 |
. . . . . . . 8
| |
| 20 | eqid 2229 |
. . . . . . . 8
| |
| 21 | 18, 19, 20, 9 | lmodvs0 14280 |
. . . . . . 7
|
| 22 | 21 | 3ad2antr1 1186 |
. . . . . 6
|
| 23 | 17, 22 | eqtrd 2262 |
. . . . 5
|
| 24 | simpr3 1029 |
. . . . . 6
| |
| 25 | elsni 3684 |
. . . . . 6
| |
| 26 | 24, 25 | syl 14 |
. . . . 5
|
| 27 | 23, 26 | oveq12d 6018 |
. . . 4
|
| 28 | eqid 2229 |
. . . . . . 7
| |
| 29 | 8, 28, 9 | lmod0vlid 14276 |
. . . . . 6
|
| 30 | 10, 29 | mpdan 421 |
. . . . 5
|
| 31 | 30 | adantr 276 |
. . . 4
|
| 32 | 27, 31 | eqtrd 2262 |
. . 3
|
| 33 | vex 2802 |
. . . . . . . 8
| |
| 34 | 33 | a1i 9 |
. . . . . . 7
|
| 35 | vscaslid 13191 |
. . . . . . . 8
| |
| 36 | 35 | slotex 13054 |
. . . . . . 7
|
| 37 | vex 2802 |
. . . . . . . 8
| |
| 38 | 37 | a1i 9 |
. . . . . . 7
|
| 39 | ovexg 6034 |
. . . . . . 7
| |
| 40 | 34, 36, 38, 39 | syl3anc 1271 |
. . . . . 6
|
| 41 | plusgslid 13140 |
. . . . . . 7
| |
| 42 | 41 | slotex 13054 |
. . . . . 6
|
| 43 | vex 2802 |
. . . . . . 7
| |
| 44 | 43 | a1i 9 |
. . . . . 6
|
| 45 | ovexg 6034 |
. . . . . 6
| |
| 46 | 40, 42, 44, 45 | syl3anc 1271 |
. . . . 5
|
| 47 | elsng 3681 |
. . . . 5
| |
| 48 | 46, 47 | syl 14 |
. . . 4
|
| 49 | 48 | adantr 276 |
. . 3
|
| 50 | 32, 49 | mpbird 167 |
. 2
|
| 51 | id 19 |
. 2
| |
| 52 | 1, 2, 3, 4, 5, 7, 11, 13, 50, 51 | islssmd 14317 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-plusg 13118 df-mulr 13119 df-sca 13121 df-vsca 13122 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-mgp 13879 df-ring 13956 df-lmod 14247 df-lssm 14311 |
| This theorem is referenced by: lspsn0 14380 lsp0 14381 lidl0 14447 |
| Copyright terms: Public domain | W3C validator |