ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsssn0 Unicode version

Theorem lsssn0 13866
Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss0cl.z  |-  .0.  =  ( 0g `  W )
lss0cl.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
lsssn0  |-  ( W  e.  LMod  ->  {  .0.  }  e.  S )

Proof of Theorem lsssn0
Dummy variables  x  a  b  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2194 . 2  |-  ( W  e.  LMod  ->  (Scalar `  W )  =  (Scalar `  W ) )
2 eqidd 2194 . 2  |-  ( W  e.  LMod  ->  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
) )
3 eqidd 2194 . 2  |-  ( W  e.  LMod  ->  ( Base `  W )  =  (
Base `  W )
)
4 eqidd 2194 . 2  |-  ( W  e.  LMod  ->  ( +g  `  W )  =  ( +g  `  W ) )
5 eqidd 2194 . 2  |-  ( W  e.  LMod  ->  ( .s
`  W )  =  ( .s `  W
) )
6 lss0cl.s . . 3  |-  S  =  ( LSubSp `  W )
76a1i 9 . 2  |-  ( W  e.  LMod  ->  S  =  ( LSubSp `  W )
)
8 eqid 2193 . . . 4  |-  ( Base `  W )  =  (
Base `  W )
9 lss0cl.z . . . 4  |-  .0.  =  ( 0g `  W )
108, 9lmod0vcl 13813 . . 3  |-  ( W  e.  LMod  ->  .0.  e.  ( Base `  W )
)
1110snssd 3763 . 2  |-  ( W  e.  LMod  ->  {  .0.  } 
C_  ( Base `  W
) )
12 snmg 3736 . . 3  |-  (  .0. 
e.  ( Base `  W
)  ->  E. j 
j  e.  {  .0.  } )
1310, 12syl 14 . 2  |-  ( W  e.  LMod  ->  E. j 
j  e.  {  .0.  } )
14 simpr2 1006 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  a  e.  {  .0.  } )
15 elsni 3636 . . . . . . . 8  |-  ( a  e.  {  .0.  }  ->  a  =  .0.  )
1614, 15syl 14 . . . . . . 7  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  a  =  .0.  )
1716oveq2d 5934 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( x
( .s `  W
) a )  =  ( x ( .s
`  W )  .0.  ) )
18 eqid 2193 . . . . . . . 8  |-  (Scalar `  W )  =  (Scalar `  W )
19 eqid 2193 . . . . . . . 8  |-  ( .s
`  W )  =  ( .s `  W
)
20 eqid 2193 . . . . . . . 8  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
2118, 19, 20, 9lmodvs0 13818 . . . . . . 7  |-  ( ( W  e.  LMod  /\  x  e.  ( Base `  (Scalar `  W ) ) )  ->  ( x ( .s `  W )  .0.  )  =  .0.  )
22213ad2antr1 1164 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( x
( .s `  W
)  .0.  )  =  .0.  )
2317, 22eqtrd 2226 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( x
( .s `  W
) a )  =  .0.  )
24 simpr3 1007 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  b  e.  {  .0.  } )
25 elsni 3636 . . . . . 6  |-  ( b  e.  {  .0.  }  ->  b  =  .0.  )
2624, 25syl 14 . . . . 5  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  b  =  .0.  )
2723, 26oveq12d 5936 . . . 4  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  =  (  .0.  ( +g  `  W )  .0.  )
)
28 eqid 2193 . . . . . . 7  |-  ( +g  `  W )  =  ( +g  `  W )
298, 28, 9lmod0vlid 13814 . . . . . 6  |-  ( ( W  e.  LMod  /\  .0.  e.  ( Base `  W
) )  ->  (  .0.  ( +g  `  W
)  .0.  )  =  .0.  )
3010, 29mpdan 421 . . . . 5  |-  ( W  e.  LMod  ->  (  .0.  ( +g  `  W
)  .0.  )  =  .0.  )
3130adantr 276 . . . 4  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  (  .0.  ( +g  `  W )  .0.  )  =  .0.  )
3227, 31eqtrd 2226 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  =  .0.  )
33 vex 2763 . . . . . . . 8  |-  x  e. 
_V
3433a1i 9 . . . . . . 7  |-  ( W  e.  LMod  ->  x  e. 
_V )
35 vscaslid 12780 . . . . . . . 8  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
3635slotex 12645 . . . . . . 7  |-  ( W  e.  LMod  ->  ( .s
`  W )  e. 
_V )
37 vex 2763 . . . . . . . 8  |-  a  e. 
_V
3837a1i 9 . . . . . . 7  |-  ( W  e.  LMod  ->  a  e. 
_V )
39 ovexg 5952 . . . . . . 7  |-  ( ( x  e.  _V  /\  ( .s `  W )  e.  _V  /\  a  e.  _V )  ->  (
x ( .s `  W ) a )  e.  _V )
4034, 36, 38, 39syl3anc 1249 . . . . . 6  |-  ( W  e.  LMod  ->  ( x ( .s `  W
) a )  e. 
_V )
41 plusgslid 12730 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4241slotex 12645 . . . . . 6  |-  ( W  e.  LMod  ->  ( +g  `  W )  e.  _V )
43 vex 2763 . . . . . . 7  |-  b  e. 
_V
4443a1i 9 . . . . . 6  |-  ( W  e.  LMod  ->  b  e. 
_V )
45 ovexg 5952 . . . . . 6  |-  ( ( ( x ( .s
`  W ) a )  e.  _V  /\  ( +g  `  W )  e.  _V  /\  b  e.  _V )  ->  (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e. 
_V )
4640, 42, 44, 45syl3anc 1249 . . . . 5  |-  ( W  e.  LMod  ->  ( ( x ( .s `  W ) a ) ( +g  `  W
) b )  e. 
_V )
47 elsng 3633 . . . . 5  |-  ( ( ( x ( .s
`  W ) a ) ( +g  `  W
) b )  e. 
_V  ->  ( ( ( x ( .s `  W ) a ) ( +g  `  W
) b )  e. 
{  .0.  }  <->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  =  .0.  ) )
4846, 47syl 14 . . . 4  |-  ( W  e.  LMod  ->  ( ( ( x ( .s
`  W ) a ) ( +g  `  W
) b )  e. 
{  .0.  }  <->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  =  .0.  ) )
4948adantr 276 . . 3  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( (
( x ( .s
`  W ) a ) ( +g  `  W
) b )  e. 
{  .0.  }  <->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  =  .0.  ) )
5032, 49mpbird 167 . 2  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  a  e.  {  .0.  }  /\  b  e.  {  .0.  } ) )  ->  ( (
x ( .s `  W ) a ) ( +g  `  W
) b )  e. 
{  .0.  } )
51 id 19 . 2  |-  ( W  e.  LMod  ->  W  e. 
LMod )
521, 2, 3, 4, 5, 7, 11, 13, 50, 51islssmd 13855 1  |-  ( W  e.  LMod  ->  {  .0.  }  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   _Vcvv 2760   {csn 3618   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695  Scalarcsca 12698   .scvsca 12699   0gc0g 12867   LModclmod 13783   LSubSpclss 13848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-mgp 13417  df-ring 13494  df-lmod 13785  df-lssm 13849
This theorem is referenced by:  lspsn0  13918  lsp0  13919  lidl0  13985
  Copyright terms: Public domain W3C validator