ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemarch2 Unicode version

Theorem prarloclemarch2 7420
Description: Like prarloclemarch 7419 but the integer must be at least two, and there is also  B added to the right hand side. These details follow straightforwardly but are chosen to be helpful in the proof of prarloc 7504. (Contributed by Jim Kingdon, 25-Nov-2019.)
Assertion
Ref Expression
prarloclemarch2  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C ) ) ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem prarloclemarch2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 prarloclemarch 7419 . . 3  |-  ( ( A  e.  Q.  /\  C  e.  Q. )  ->  E. z  e.  N.  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) )
213adant2 1016 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  E. z  e.  N.  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C
) )
3 pinn 7310 . . . . . . . 8  |-  ( z  e.  N.  ->  z  e.  om )
4 1pi 7316 . . . . . . . . . . . 12  |-  1o  e.  N.
54elexi 2751 . . . . . . . . . . 11  |-  1o  e.  _V
65sucid 4419 . . . . . . . . . 10  |-  1o  e.  suc  1o
7 df-2o 6420 . . . . . . . . . 10  |-  2o  =  suc  1o
86, 7eleqtrri 2253 . . . . . . . . 9  |-  1o  e.  2o
9 2onn 6524 . . . . . . . . . . 11  |-  2o  e.  om
10 nnaword2 6517 . . . . . . . . . . 11  |-  ( ( 2o  e.  om  /\  z  e.  om )  ->  2o  C_  ( z  +o  2o ) )
119, 10mpan 424 . . . . . . . . . 10  |-  ( z  e.  om  ->  2o  C_  ( z  +o  2o ) )
1211sseld 3156 . . . . . . . . 9  |-  ( z  e.  om  ->  ( 1o  e.  2o  ->  1o  e.  ( z  +o  2o ) ) )
138, 12mpi 15 . . . . . . . 8  |-  ( z  e.  om  ->  1o  e.  ( z  +o  2o ) )
143, 13syl 14 . . . . . . 7  |-  ( z  e.  N.  ->  1o  e.  ( z  +o  2o ) )
15 o1p1e2 6471 . . . . . . . . 9  |-  ( 1o 
+o  1o )  =  2o
16 addpiord 7317 . . . . . . . . . . 11  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  +N  1o )  =  ( 1o  +o  1o ) )
174, 4, 16mp2an 426 . . . . . . . . . 10  |-  ( 1o 
+N  1o )  =  ( 1o  +o  1o )
18 addclpi 7328 . . . . . . . . . . 11  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  +N  1o )  e.  N. )
194, 4, 18mp2an 426 . . . . . . . . . 10  |-  ( 1o 
+N  1o )  e. 
N.
2017, 19eqeltrri 2251 . . . . . . . . 9  |-  ( 1o 
+o  1o )  e. 
N.
2115, 20eqeltrri 2251 . . . . . . . 8  |-  2o  e.  N.
22 addpiord 7317 . . . . . . . 8  |-  ( ( z  e.  N.  /\  2o  e.  N. )  -> 
( z  +N  2o )  =  ( z  +o  2o ) )
2321, 22mpan2 425 . . . . . . 7  |-  ( z  e.  N.  ->  (
z  +N  2o )  =  ( z  +o  2o ) )
2414, 23eleqtrrd 2257 . . . . . 6  |-  ( z  e.  N.  ->  1o  e.  ( z  +N  2o ) )
25 addclpi 7328 . . . . . . . 8  |-  ( ( z  e.  N.  /\  2o  e.  N. )  -> 
( z  +N  2o )  e.  N. )
2621, 25mpan2 425 . . . . . . 7  |-  ( z  e.  N.  ->  (
z  +N  2o )  e.  N. )
27 ltpiord 7320 . . . . . . . 8  |-  ( ( 1o  e.  N.  /\  ( z  +N  2o )  e.  N. )  ->  ( 1o  <N  (
z  +N  2o )  <-> 
1o  e.  ( z  +N  2o ) ) )
284, 27mpan 424 . . . . . . 7  |-  ( ( z  +N  2o )  e.  N.  ->  ( 1o  <N  ( z  +N  2o )  <->  1o  e.  ( z  +N  2o ) ) )
2926, 28syl 14 . . . . . 6  |-  ( z  e.  N.  ->  ( 1o  <N  ( z  +N  2o )  <->  1o  e.  ( z  +N  2o ) ) )
3024, 29mpbird 167 . . . . 5  |-  ( z  e.  N.  ->  1o  <N  ( z  +N  2o ) )
3130adantl 277 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  1o  <N  (
z  +N  2o ) )
3231adantrr 479 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  1o  <N  ( z  +N  2o ) )
33 nna0 6477 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  om  ->  (
z  +o  (/) )  =  z )
34 0lt1o 6443 . . . . . . . . . . . . . . . . . . . 20  |-  (/)  e.  1o
35 1on 6426 . . . . . . . . . . . . . . . . . . . . . 22  |-  1o  e.  On
3635onsuci 4517 . . . . . . . . . . . . . . . . . . . . 21  |-  suc  1o  e.  On
37 ontr1 4391 . . . . . . . . . . . . . . . . . . . . 21  |-  ( suc 
1o  e.  On  ->  ( ( (/)  e.  1o  /\  1o  e.  suc  1o )  ->  (/)  e.  suc  1o ) )
3836, 37ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
(/)  e.  1o  /\  1o  e.  suc  1o )  ->  (/) 
e.  suc  1o )
3934, 6, 38mp2an 426 . . . . . . . . . . . . . . . . . . 19  |-  (/)  e.  suc  1o
4039, 7eleqtrri 2253 . . . . . . . . . . . . . . . . . 18  |-  (/)  e.  2o
41 nnaordi 6511 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2o  e.  om  /\  z  e.  om )  ->  ( (/)  e.  2o  ->  ( z  +o  (/) )  e.  ( z  +o  2o ) ) )
429, 41mpan 424 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  om  ->  ( (/) 
e.  2o  ->  ( z  +o  (/) )  e.  ( z  +o  2o ) ) )
4340, 42mpi 15 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  om  ->  (
z  +o  (/) )  e.  ( z  +o  2o ) )
4433, 43eqeltrrd 2255 . . . . . . . . . . . . . . . 16  |-  ( z  e.  om  ->  z  e.  ( z  +o  2o ) )
453, 44syl 14 . . . . . . . . . . . . . . 15  |-  ( z  e.  N.  ->  z  e.  ( z  +o  2o ) )
4645, 23eleqtrrd 2257 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  z  e.  ( z  +N  2o ) )
47 ltpiord 7320 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  N.  /\  ( z  +N  2o )  e.  N. )  ->  ( z  <N  (
z  +N  2o )  <-> 
z  e.  ( z  +N  2o ) ) )
4826, 47mpdan 421 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  (
z  <N  ( z  +N  2o )  <->  z  e.  ( z  +N  2o ) ) )
4946, 48mpbird 167 . . . . . . . . . . . . 13  |-  ( z  e.  N.  ->  z  <N  ( z  +N  2o ) )
50 mulidpi 7319 . . . . . . . . . . . . 13  |-  ( z  e.  N.  ->  (
z  .N  1o )  =  z )
51 mulcompig 7332 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  +N  2o )  e.  N.  /\  1o  e.  N. )  ->  (
( z  +N  2o )  .N  1o )  =  ( 1o  .N  (
z  +N  2o ) ) )
524, 51mpan2 425 . . . . . . . . . . . . . . 15  |-  ( ( z  +N  2o )  e.  N.  ->  (
( z  +N  2o )  .N  1o )  =  ( 1o  .N  (
z  +N  2o ) ) )
5326, 52syl 14 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  (
( z  +N  2o )  .N  1o )  =  ( 1o  .N  (
z  +N  2o ) ) )
54 mulidpi 7319 . . . . . . . . . . . . . . 15  |-  ( ( z  +N  2o )  e.  N.  ->  (
( z  +N  2o )  .N  1o )  =  ( z  +N  2o ) )
5526, 54syl 14 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  (
( z  +N  2o )  .N  1o )  =  ( z  +N  2o ) )
5653, 55eqtr3d 2212 . . . . . . . . . . . . 13  |-  ( z  e.  N.  ->  ( 1o  .N  ( z  +N  2o ) )  =  ( z  +N  2o ) )
5749, 50, 563brtr4d 4037 . . . . . . . . . . . 12  |-  ( z  e.  N.  ->  (
z  .N  1o ) 
<N  ( 1o  .N  (
z  +N  2o ) ) )
58 ordpipqqs 7375 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  N.  /\  1o  e.  N. )  /\  ( ( z  +N  2o )  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( 1o  .N  (
z  +N  2o ) ) ) )
594, 58mpanl2 435 . . . . . . . . . . . . . 14  |-  ( ( z  e.  N.  /\  ( ( z  +N  2o )  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( 1o  .N  (
z  +N  2o ) ) ) )
604, 59mpanr2 438 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  ( z  +N  2o )  e.  N. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( 1o  .N  (
z  +N  2o ) ) ) )
6126, 60mpdan 421 . . . . . . . . . . . 12  |-  ( z  e.  N.  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( 1o  .N  (
z  +N  2o ) ) ) )
6257, 61mpbird 167 . . . . . . . . . . 11  |-  ( z  e.  N.  ->  [ <. z ,  1o >. ]  ~Q  <Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  )
6362adantl 277 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  [ <. z ,  1o >. ]  ~Q  <Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  )
64 opelxpi 4660 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  +N  2o )  e.  N.  /\  1o  e.  N. )  ->  <. (
z  +N  2o ) ,  1o >.  e.  ( N.  X.  N. )
)
654, 64mpan2 425 . . . . . . . . . . . . . . 15  |-  ( ( z  +N  2o )  e.  N.  ->  <. (
z  +N  2o ) ,  1o >.  e.  ( N.  X.  N. )
)
66 enqex 7361 . . . . . . . . . . . . . . . 16  |-  ~Q  e.  _V
6766ecelqsi 6591 . . . . . . . . . . . . . . 15  |-  ( <.
( z  +N  2o ) ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
6826, 65, 673syl 17 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
69 df-nqqs 7349 . . . . . . . . . . . . . 14  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
7068, 69eleqtrrdi 2271 . . . . . . . . . . . . 13  |-  ( z  e.  N.  ->  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  Q. )
71 opelxpi 4660 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  N.  /\  1o  e.  N. )  ->  <. z ,  1o >.  e.  ( N.  X.  N. ) )
724, 71mpan2 425 . . . . . . . . . . . . . . . 16  |-  ( z  e.  N.  ->  <. z ,  1o >.  e.  ( N.  X.  N. ) )
7366ecelqsi 6591 . . . . . . . . . . . . . . . 16  |-  ( <.
z ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. z ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
7472, 73syl 14 . . . . . . . . . . . . . . 15  |-  ( z  e.  N.  ->  [ <. z ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
7574, 69eleqtrrdi 2271 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  [ <. z ,  1o >. ]  ~Q  e.  Q. )
76 ltmnqg 7402 . . . . . . . . . . . . . 14  |-  ( ( [ <. z ,  1o >. ]  ~Q  e.  Q.  /\ 
[ <. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  Q.  /\  C  e.  Q. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  ) ) )
7775, 76syl3an1 1271 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  Q.  /\  C  e. 
Q. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  ) ) )
7870, 77syl3an2 1272 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  z  e.  N.  /\  C  e.  Q. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  ) ) )
79783anidm12 1295 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  C  e.  Q. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  ) ) )
8079ancoms 268 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  ) ) )
8163, 80mpbid 147 . . . . . . . . 9  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  ) )
82 mulcomnqg 7384 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  [
<. z ,  1o >. ]  ~Q  e.  Q. )  ->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  =  ( [ <. z ,  1o >. ]  ~Q  .Q  C
) )
8375, 82sylan2 286 . . . . . . . . 9  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  =  ( [ <. z ,  1o >. ]  ~Q  .Q  C
) )
84 mulcomnqg 7384 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  Q. )  ->  ( C  .Q  [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  )  =  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
8570, 84sylan2 286 . . . . . . . . 9  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( C  .Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  )  =  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
8681, 83, 853brtr3d 4036 . . . . . . . 8  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) )
87863ad2antl3 1161 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) )
8887adantrr 479 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  ( [ <. z ,  1o >. ]  ~Q  .Q  C
)  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
89 ltsonq 7399 . . . . . . . . . 10  |-  <Q  Or  Q.
90 ltrelnq 7366 . . . . . . . . . 10  |-  <Q  C_  ( Q.  X.  Q. )
9189, 90sotri 5026 . . . . . . . . 9  |-  ( ( A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C )  /\  ( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) )  ->  A  <Q  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
9291ex 115 . . . . . . . 8  |-  ( A 
<Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C )  ->  (
( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
)  ->  A  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) )
9392adantl 277 . . . . . . 7  |-  ( ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) )  -> 
( ( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
)  ->  A  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) )
9493adantl 277 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  (
( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
)  ->  A  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) )
9588, 94mpd 13 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  A  <Q  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
96 mulclnq 7377 . . . . . . . . . 10  |-  ( ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  Q.  /\  C  e.  Q. )  ->  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q. )
9770, 96sylan 283 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  C  e.  Q. )  ->  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q. )
9897ancoms 268 . . . . . . . 8  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q. )
99983ad2antl3 1161 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q. )
100 simpl2 1001 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  B  e.  Q. )
101 ltaddnq 7408 . . . . . . 7  |-  ( ( ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q.  /\  B  e.  Q. )  ->  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  <Q  (
( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )
10299, 100, 101syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  <Q  (
( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )
103102adantrr 479 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
)  <Q  ( ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )
10489, 90sotri 5026 . . . . 5  |-  ( ( A  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  /\  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
)  <Q  ( ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )  ->  A  <Q  ( ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )
10595, 103, 104syl2anc 411 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  A  <Q  ( ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )
106 addcomnqg 7382 . . . . . . 7  |-  ( ( ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q.  /\  B  e.  Q. )  ->  ( ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
)  =  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) )
10799, 100, 106syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
)  =  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) )
108107breq2d 4017 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( A  <Q  ( ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
)  <->  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) ) )
109108adantrr 479 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  ( A  <Q  ( ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
)  <->  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) ) )
110105, 109mpbid 147 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) )
111 simpr 110 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  z  e.  N. )
112 breq2 4009 . . . . . . . 8  |-  ( x  =  ( z  +N  2o )  ->  ( 1o  <N  x  <->  1o  <N  ( z  +N  2o ) ) )
113 opeq1 3780 . . . . . . . . . . . 12  |-  ( x  =  ( z  +N  2o )  ->  <. x ,  1o >.  =  <. ( z  +N  2o ) ,  1o >. )
114113eceq1d 6573 . . . . . . . . . . 11  |-  ( x  =  ( z  +N  2o )  ->  [ <. x ,  1o >. ]  ~Q  =  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  )
115114oveq1d 5892 . . . . . . . . . 10  |-  ( x  =  ( z  +N  2o )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  C
)  =  ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
116115oveq2d 5893 . . . . . . . . 9  |-  ( x  =  ( z  +N  2o )  ->  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C ) )  =  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) )
117116breq2d 4017 . . . . . . . 8  |-  ( x  =  ( z  +N  2o )  ->  ( A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C
) )  <->  A  <Q  ( B  +Q  ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) ) )
118112, 117anbi12d 473 . . . . . . 7  |-  ( x  =  ( z  +N  2o )  ->  (
( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C ) ) )  <-> 
( 1o  <N  (
z  +N  2o )  /\  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) ) ) )
119118rspcev 2843 . . . . . 6  |-  ( ( ( z  +N  2o )  e.  N.  /\  ( 1o  <N  ( z  +N  2o )  /\  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) ) )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C
) ) ) )
120119ex 115 . . . . 5  |-  ( ( z  +N  2o )  e.  N.  ->  (
( 1o  <N  (
z  +N  2o )  /\  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C
) ) ) ) )
121111, 26, 1203syl 17 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( ( 1o 
<N  ( z  +N  2o )  /\  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C
) ) ) ) )
122121adantrr 479 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  (
( 1o  <N  (
z  +N  2o )  /\  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C
) ) ) ) )
12332, 110, 122mp2and 433 . 2  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C ) ) ) )
1242, 123rexlimddv 2599 1  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456    C_ wss 3131   (/)c0 3424   <.cop 3597   class class class wbr 4005   Oncon0 4365   suc csuc 4367   omcom 4591    X. cxp 4626  (class class class)co 5877   1oc1o 6412   2oc2o 6413    +o coa 6416   [cec 6535   /.cqs 6536   N.cnpi 7273    +N cpli 7274    .N cmi 7275    <N clti 7276    ~Q ceq 7280   Q.cnq 7281    +Q cplq 7283    .Q cmq 7284    <Q cltq 7286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354
This theorem is referenced by:  prarloc  7504
  Copyright terms: Public domain W3C validator