ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemarch2 Unicode version

Theorem prarloclemarch2 7567
Description: Like prarloclemarch 7566 but the integer must be at least two, and there is also  B added to the right hand side. These details follow straightforwardly but are chosen to be helpful in the proof of prarloc 7651. (Contributed by Jim Kingdon, 25-Nov-2019.)
Assertion
Ref Expression
prarloclemarch2  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C ) ) ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem prarloclemarch2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 prarloclemarch 7566 . . 3  |-  ( ( A  e.  Q.  /\  C  e.  Q. )  ->  E. z  e.  N.  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) )
213adant2 1019 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  E. z  e.  N.  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C
) )
3 pinn 7457 . . . . . . . 8  |-  ( z  e.  N.  ->  z  e.  om )
4 1pi 7463 . . . . . . . . . . . 12  |-  1o  e.  N.
54elexi 2789 . . . . . . . . . . 11  |-  1o  e.  _V
65sucid 4482 . . . . . . . . . 10  |-  1o  e.  suc  1o
7 df-2o 6526 . . . . . . . . . 10  |-  2o  =  suc  1o
86, 7eleqtrri 2283 . . . . . . . . 9  |-  1o  e.  2o
9 2onn 6630 . . . . . . . . . . 11  |-  2o  e.  om
10 nnaword2 6623 . . . . . . . . . . 11  |-  ( ( 2o  e.  om  /\  z  e.  om )  ->  2o  C_  ( z  +o  2o ) )
119, 10mpan 424 . . . . . . . . . 10  |-  ( z  e.  om  ->  2o  C_  ( z  +o  2o ) )
1211sseld 3200 . . . . . . . . 9  |-  ( z  e.  om  ->  ( 1o  e.  2o  ->  1o  e.  ( z  +o  2o ) ) )
138, 12mpi 15 . . . . . . . 8  |-  ( z  e.  om  ->  1o  e.  ( z  +o  2o ) )
143, 13syl 14 . . . . . . 7  |-  ( z  e.  N.  ->  1o  e.  ( z  +o  2o ) )
15 o1p1e2 6577 . . . . . . . . 9  |-  ( 1o 
+o  1o )  =  2o
16 addpiord 7464 . . . . . . . . . . 11  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  +N  1o )  =  ( 1o  +o  1o ) )
174, 4, 16mp2an 426 . . . . . . . . . 10  |-  ( 1o 
+N  1o )  =  ( 1o  +o  1o )
18 addclpi 7475 . . . . . . . . . . 11  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  +N  1o )  e.  N. )
194, 4, 18mp2an 426 . . . . . . . . . 10  |-  ( 1o 
+N  1o )  e. 
N.
2017, 19eqeltrri 2281 . . . . . . . . 9  |-  ( 1o 
+o  1o )  e. 
N.
2115, 20eqeltrri 2281 . . . . . . . 8  |-  2o  e.  N.
22 addpiord 7464 . . . . . . . 8  |-  ( ( z  e.  N.  /\  2o  e.  N. )  -> 
( z  +N  2o )  =  ( z  +o  2o ) )
2321, 22mpan2 425 . . . . . . 7  |-  ( z  e.  N.  ->  (
z  +N  2o )  =  ( z  +o  2o ) )
2414, 23eleqtrrd 2287 . . . . . 6  |-  ( z  e.  N.  ->  1o  e.  ( z  +N  2o ) )
25 addclpi 7475 . . . . . . . 8  |-  ( ( z  e.  N.  /\  2o  e.  N. )  -> 
( z  +N  2o )  e.  N. )
2621, 25mpan2 425 . . . . . . 7  |-  ( z  e.  N.  ->  (
z  +N  2o )  e.  N. )
27 ltpiord 7467 . . . . . . . 8  |-  ( ( 1o  e.  N.  /\  ( z  +N  2o )  e.  N. )  ->  ( 1o  <N  (
z  +N  2o )  <-> 
1o  e.  ( z  +N  2o ) ) )
284, 27mpan 424 . . . . . . 7  |-  ( ( z  +N  2o )  e.  N.  ->  ( 1o  <N  ( z  +N  2o )  <->  1o  e.  ( z  +N  2o ) ) )
2926, 28syl 14 . . . . . 6  |-  ( z  e.  N.  ->  ( 1o  <N  ( z  +N  2o )  <->  1o  e.  ( z  +N  2o ) ) )
3024, 29mpbird 167 . . . . 5  |-  ( z  e.  N.  ->  1o  <N  ( z  +N  2o ) )
3130adantl 277 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  1o  <N  (
z  +N  2o ) )
3231adantrr 479 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  1o  <N  ( z  +N  2o ) )
33 nna0 6583 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  om  ->  (
z  +o  (/) )  =  z )
34 0lt1o 6549 . . . . . . . . . . . . . . . . . . . 20  |-  (/)  e.  1o
35 1on 6532 . . . . . . . . . . . . . . . . . . . . . 22  |-  1o  e.  On
3635onsuci 4582 . . . . . . . . . . . . . . . . . . . . 21  |-  suc  1o  e.  On
37 ontr1 4454 . . . . . . . . . . . . . . . . . . . . 21  |-  ( suc 
1o  e.  On  ->  ( ( (/)  e.  1o  /\  1o  e.  suc  1o )  ->  (/)  e.  suc  1o ) )
3836, 37ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
(/)  e.  1o  /\  1o  e.  suc  1o )  ->  (/) 
e.  suc  1o )
3934, 6, 38mp2an 426 . . . . . . . . . . . . . . . . . . 19  |-  (/)  e.  suc  1o
4039, 7eleqtrri 2283 . . . . . . . . . . . . . . . . . 18  |-  (/)  e.  2o
41 nnaordi 6617 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2o  e.  om  /\  z  e.  om )  ->  ( (/)  e.  2o  ->  ( z  +o  (/) )  e.  ( z  +o  2o ) ) )
429, 41mpan 424 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  om  ->  ( (/) 
e.  2o  ->  ( z  +o  (/) )  e.  ( z  +o  2o ) ) )
4340, 42mpi 15 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  om  ->  (
z  +o  (/) )  e.  ( z  +o  2o ) )
4433, 43eqeltrrd 2285 . . . . . . . . . . . . . . . 16  |-  ( z  e.  om  ->  z  e.  ( z  +o  2o ) )
453, 44syl 14 . . . . . . . . . . . . . . 15  |-  ( z  e.  N.  ->  z  e.  ( z  +o  2o ) )
4645, 23eleqtrrd 2287 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  z  e.  ( z  +N  2o ) )
47 ltpiord 7467 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  N.  /\  ( z  +N  2o )  e.  N. )  ->  ( z  <N  (
z  +N  2o )  <-> 
z  e.  ( z  +N  2o ) ) )
4826, 47mpdan 421 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  (
z  <N  ( z  +N  2o )  <->  z  e.  ( z  +N  2o ) ) )
4946, 48mpbird 167 . . . . . . . . . . . . 13  |-  ( z  e.  N.  ->  z  <N  ( z  +N  2o ) )
50 mulidpi 7466 . . . . . . . . . . . . 13  |-  ( z  e.  N.  ->  (
z  .N  1o )  =  z )
51 mulcompig 7479 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  +N  2o )  e.  N.  /\  1o  e.  N. )  ->  (
( z  +N  2o )  .N  1o )  =  ( 1o  .N  (
z  +N  2o ) ) )
524, 51mpan2 425 . . . . . . . . . . . . . . 15  |-  ( ( z  +N  2o )  e.  N.  ->  (
( z  +N  2o )  .N  1o )  =  ( 1o  .N  (
z  +N  2o ) ) )
5326, 52syl 14 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  (
( z  +N  2o )  .N  1o )  =  ( 1o  .N  (
z  +N  2o ) ) )
54 mulidpi 7466 . . . . . . . . . . . . . . 15  |-  ( ( z  +N  2o )  e.  N.  ->  (
( z  +N  2o )  .N  1o )  =  ( z  +N  2o ) )
5526, 54syl 14 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  (
( z  +N  2o )  .N  1o )  =  ( z  +N  2o ) )
5653, 55eqtr3d 2242 . . . . . . . . . . . . 13  |-  ( z  e.  N.  ->  ( 1o  .N  ( z  +N  2o ) )  =  ( z  +N  2o ) )
5749, 50, 563brtr4d 4091 . . . . . . . . . . . 12  |-  ( z  e.  N.  ->  (
z  .N  1o ) 
<N  ( 1o  .N  (
z  +N  2o ) ) )
58 ordpipqqs 7522 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  N.  /\  1o  e.  N. )  /\  ( ( z  +N  2o )  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( 1o  .N  (
z  +N  2o ) ) ) )
594, 58mpanl2 435 . . . . . . . . . . . . . 14  |-  ( ( z  e.  N.  /\  ( ( z  +N  2o )  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( 1o  .N  (
z  +N  2o ) ) ) )
604, 59mpanr2 438 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  ( z  +N  2o )  e.  N. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( 1o  .N  (
z  +N  2o ) ) ) )
6126, 60mpdan 421 . . . . . . . . . . . 12  |-  ( z  e.  N.  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( 1o  .N  (
z  +N  2o ) ) ) )
6257, 61mpbird 167 . . . . . . . . . . 11  |-  ( z  e.  N.  ->  [ <. z ,  1o >. ]  ~Q  <Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  )
6362adantl 277 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  [ <. z ,  1o >. ]  ~Q  <Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  )
64 opelxpi 4725 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  +N  2o )  e.  N.  /\  1o  e.  N. )  ->  <. (
z  +N  2o ) ,  1o >.  e.  ( N.  X.  N. )
)
654, 64mpan2 425 . . . . . . . . . . . . . . 15  |-  ( ( z  +N  2o )  e.  N.  ->  <. (
z  +N  2o ) ,  1o >.  e.  ( N.  X.  N. )
)
66 enqex 7508 . . . . . . . . . . . . . . . 16  |-  ~Q  e.  _V
6766ecelqsi 6699 . . . . . . . . . . . . . . 15  |-  ( <.
( z  +N  2o ) ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
6826, 65, 673syl 17 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
69 df-nqqs 7496 . . . . . . . . . . . . . 14  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
7068, 69eleqtrrdi 2301 . . . . . . . . . . . . 13  |-  ( z  e.  N.  ->  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  Q. )
71 opelxpi 4725 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  N.  /\  1o  e.  N. )  ->  <. z ,  1o >.  e.  ( N.  X.  N. ) )
724, 71mpan2 425 . . . . . . . . . . . . . . . 16  |-  ( z  e.  N.  ->  <. z ,  1o >.  e.  ( N.  X.  N. ) )
7366ecelqsi 6699 . . . . . . . . . . . . . . . 16  |-  ( <.
z ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. z ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
7472, 73syl 14 . . . . . . . . . . . . . . 15  |-  ( z  e.  N.  ->  [ <. z ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
7574, 69eleqtrrdi 2301 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  [ <. z ,  1o >. ]  ~Q  e.  Q. )
76 ltmnqg 7549 . . . . . . . . . . . . . 14  |-  ( ( [ <. z ,  1o >. ]  ~Q  e.  Q.  /\ 
[ <. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  Q.  /\  C  e.  Q. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  ) ) )
7775, 76syl3an1 1283 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  Q.  /\  C  e. 
Q. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  ) ) )
7870, 77syl3an2 1284 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  z  e.  N.  /\  C  e.  Q. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  ) ) )
79783anidm12 1308 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  C  e.  Q. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  ) ) )
8079ancoms 268 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  ) ) )
8163, 80mpbid 147 . . . . . . . . 9  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  ) )
82 mulcomnqg 7531 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  [
<. z ,  1o >. ]  ~Q  e.  Q. )  ->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  =  ( [ <. z ,  1o >. ]  ~Q  .Q  C
) )
8375, 82sylan2 286 . . . . . . . . 9  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  =  ( [ <. z ,  1o >. ]  ~Q  .Q  C
) )
84 mulcomnqg 7531 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  Q. )  ->  ( C  .Q  [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  )  =  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
8570, 84sylan2 286 . . . . . . . . 9  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( C  .Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  )  =  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
8681, 83, 853brtr3d 4090 . . . . . . . 8  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) )
87863ad2antl3 1164 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) )
8887adantrr 479 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  ( [ <. z ,  1o >. ]  ~Q  .Q  C
)  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
89 ltsonq 7546 . . . . . . . . . 10  |-  <Q  Or  Q.
90 ltrelnq 7513 . . . . . . . . . 10  |-  <Q  C_  ( Q.  X.  Q. )
9189, 90sotri 5097 . . . . . . . . 9  |-  ( ( A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C )  /\  ( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) )  ->  A  <Q  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
9291ex 115 . . . . . . . 8  |-  ( A 
<Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C )  ->  (
( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
)  ->  A  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) )
9392adantl 277 . . . . . . 7  |-  ( ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) )  -> 
( ( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
)  ->  A  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) )
9493adantl 277 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  (
( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
)  ->  A  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) )
9588, 94mpd 13 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  A  <Q  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
96 mulclnq 7524 . . . . . . . . . 10  |-  ( ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  Q.  /\  C  e.  Q. )  ->  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q. )
9770, 96sylan 283 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  C  e.  Q. )  ->  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q. )
9897ancoms 268 . . . . . . . 8  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q. )
99983ad2antl3 1164 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q. )
100 simpl2 1004 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  B  e.  Q. )
101 ltaddnq 7555 . . . . . . 7  |-  ( ( ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q.  /\  B  e.  Q. )  ->  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  <Q  (
( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )
10299, 100, 101syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  <Q  (
( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )
103102adantrr 479 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
)  <Q  ( ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )
10489, 90sotri 5097 . . . . 5  |-  ( ( A  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  /\  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
)  <Q  ( ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )  ->  A  <Q  ( ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )
10595, 103, 104syl2anc 411 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  A  <Q  ( ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )
106 addcomnqg 7529 . . . . . . 7  |-  ( ( ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q.  /\  B  e.  Q. )  ->  ( ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
)  =  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) )
10799, 100, 106syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
)  =  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) )
108107breq2d 4071 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( A  <Q  ( ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
)  <->  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) ) )
109108adantrr 479 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  ( A  <Q  ( ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
)  <->  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) ) )
110105, 109mpbid 147 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) )
111 simpr 110 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  z  e.  N. )
112 breq2 4063 . . . . . . . 8  |-  ( x  =  ( z  +N  2o )  ->  ( 1o  <N  x  <->  1o  <N  ( z  +N  2o ) ) )
113 opeq1 3833 . . . . . . . . . . . 12  |-  ( x  =  ( z  +N  2o )  ->  <. x ,  1o >.  =  <. ( z  +N  2o ) ,  1o >. )
114113eceq1d 6679 . . . . . . . . . . 11  |-  ( x  =  ( z  +N  2o )  ->  [ <. x ,  1o >. ]  ~Q  =  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  )
115114oveq1d 5982 . . . . . . . . . 10  |-  ( x  =  ( z  +N  2o )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  C
)  =  ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
116115oveq2d 5983 . . . . . . . . 9  |-  ( x  =  ( z  +N  2o )  ->  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C ) )  =  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) )
117116breq2d 4071 . . . . . . . 8  |-  ( x  =  ( z  +N  2o )  ->  ( A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C
) )  <->  A  <Q  ( B  +Q  ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) ) )
118112, 117anbi12d 473 . . . . . . 7  |-  ( x  =  ( z  +N  2o )  ->  (
( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C ) ) )  <-> 
( 1o  <N  (
z  +N  2o )  /\  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) ) ) )
119118rspcev 2884 . . . . . 6  |-  ( ( ( z  +N  2o )  e.  N.  /\  ( 1o  <N  ( z  +N  2o )  /\  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) ) )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C
) ) ) )
120119ex 115 . . . . 5  |-  ( ( z  +N  2o )  e.  N.  ->  (
( 1o  <N  (
z  +N  2o )  /\  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C
) ) ) ) )
121111, 26, 1203syl 17 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( ( 1o 
<N  ( z  +N  2o )  /\  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C
) ) ) ) )
122121adantrr 479 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  (
( 1o  <N  (
z  +N  2o )  /\  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C
) ) ) ) )
12332, 110, 122mp2and 433 . 2  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C ) ) ) )
1242, 123rexlimddv 2630 1  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487    C_ wss 3174   (/)c0 3468   <.cop 3646   class class class wbr 4059   Oncon0 4428   suc csuc 4430   omcom 4656    X. cxp 4691  (class class class)co 5967   1oc1o 6518   2oc2o 6519    +o coa 6522   [cec 6641   /.cqs 6642   N.cnpi 7420    +N cpli 7421    .N cmi 7422    <N clti 7423    ~Q ceq 7427   Q.cnq 7428    +Q cplq 7430    .Q cmq 7431    <Q cltq 7433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501
This theorem is referenced by:  prarloc  7651
  Copyright terms: Public domain W3C validator