ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemarch2 Unicode version

Theorem prarloclemarch2 7360
Description: Like prarloclemarch 7359 but the integer must be at least two, and there is also  B added to the right hand side. These details follow straightforwardly but are chosen to be helpful in the proof of prarloc 7444. (Contributed by Jim Kingdon, 25-Nov-2019.)
Assertion
Ref Expression
prarloclemarch2  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C ) ) ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem prarloclemarch2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 prarloclemarch 7359 . . 3  |-  ( ( A  e.  Q.  /\  C  e.  Q. )  ->  E. z  e.  N.  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) )
213adant2 1006 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  E. z  e.  N.  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C
) )
3 pinn 7250 . . . . . . . 8  |-  ( z  e.  N.  ->  z  e.  om )
4 1pi 7256 . . . . . . . . . . . 12  |-  1o  e.  N.
54elexi 2738 . . . . . . . . . . 11  |-  1o  e.  _V
65sucid 4395 . . . . . . . . . 10  |-  1o  e.  suc  1o
7 df-2o 6385 . . . . . . . . . 10  |-  2o  =  suc  1o
86, 7eleqtrri 2242 . . . . . . . . 9  |-  1o  e.  2o
9 2onn 6489 . . . . . . . . . . 11  |-  2o  e.  om
10 nnaword2 6482 . . . . . . . . . . 11  |-  ( ( 2o  e.  om  /\  z  e.  om )  ->  2o  C_  ( z  +o  2o ) )
119, 10mpan 421 . . . . . . . . . 10  |-  ( z  e.  om  ->  2o  C_  ( z  +o  2o ) )
1211sseld 3141 . . . . . . . . 9  |-  ( z  e.  om  ->  ( 1o  e.  2o  ->  1o  e.  ( z  +o  2o ) ) )
138, 12mpi 15 . . . . . . . 8  |-  ( z  e.  om  ->  1o  e.  ( z  +o  2o ) )
143, 13syl 14 . . . . . . 7  |-  ( z  e.  N.  ->  1o  e.  ( z  +o  2o ) )
15 o1p1e2 6436 . . . . . . . . 9  |-  ( 1o 
+o  1o )  =  2o
16 addpiord 7257 . . . . . . . . . . 11  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  +N  1o )  =  ( 1o  +o  1o ) )
174, 4, 16mp2an 423 . . . . . . . . . 10  |-  ( 1o 
+N  1o )  =  ( 1o  +o  1o )
18 addclpi 7268 . . . . . . . . . . 11  |-  ( ( 1o  e.  N.  /\  1o  e.  N. )  -> 
( 1o  +N  1o )  e.  N. )
194, 4, 18mp2an 423 . . . . . . . . . 10  |-  ( 1o 
+N  1o )  e. 
N.
2017, 19eqeltrri 2240 . . . . . . . . 9  |-  ( 1o 
+o  1o )  e. 
N.
2115, 20eqeltrri 2240 . . . . . . . 8  |-  2o  e.  N.
22 addpiord 7257 . . . . . . . 8  |-  ( ( z  e.  N.  /\  2o  e.  N. )  -> 
( z  +N  2o )  =  ( z  +o  2o ) )
2321, 22mpan2 422 . . . . . . 7  |-  ( z  e.  N.  ->  (
z  +N  2o )  =  ( z  +o  2o ) )
2414, 23eleqtrrd 2246 . . . . . 6  |-  ( z  e.  N.  ->  1o  e.  ( z  +N  2o ) )
25 addclpi 7268 . . . . . . . 8  |-  ( ( z  e.  N.  /\  2o  e.  N. )  -> 
( z  +N  2o )  e.  N. )
2621, 25mpan2 422 . . . . . . 7  |-  ( z  e.  N.  ->  (
z  +N  2o )  e.  N. )
27 ltpiord 7260 . . . . . . . 8  |-  ( ( 1o  e.  N.  /\  ( z  +N  2o )  e.  N. )  ->  ( 1o  <N  (
z  +N  2o )  <-> 
1o  e.  ( z  +N  2o ) ) )
284, 27mpan 421 . . . . . . 7  |-  ( ( z  +N  2o )  e.  N.  ->  ( 1o  <N  ( z  +N  2o )  <->  1o  e.  ( z  +N  2o ) ) )
2926, 28syl 14 . . . . . 6  |-  ( z  e.  N.  ->  ( 1o  <N  ( z  +N  2o )  <->  1o  e.  ( z  +N  2o ) ) )
3024, 29mpbird 166 . . . . 5  |-  ( z  e.  N.  ->  1o  <N  ( z  +N  2o ) )
3130adantl 275 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  1o  <N  (
z  +N  2o ) )
3231adantrr 471 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  1o  <N  ( z  +N  2o ) )
33 nna0 6442 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  om  ->  (
z  +o  (/) )  =  z )
34 0lt1o 6408 . . . . . . . . . . . . . . . . . . . 20  |-  (/)  e.  1o
35 1on 6391 . . . . . . . . . . . . . . . . . . . . . 22  |-  1o  e.  On
3635onsuci 4493 . . . . . . . . . . . . . . . . . . . . 21  |-  suc  1o  e.  On
37 ontr1 4367 . . . . . . . . . . . . . . . . . . . . 21  |-  ( suc 
1o  e.  On  ->  ( ( (/)  e.  1o  /\  1o  e.  suc  1o )  ->  (/)  e.  suc  1o ) )
3836, 37ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
(/)  e.  1o  /\  1o  e.  suc  1o )  ->  (/) 
e.  suc  1o )
3934, 6, 38mp2an 423 . . . . . . . . . . . . . . . . . . 19  |-  (/)  e.  suc  1o
4039, 7eleqtrri 2242 . . . . . . . . . . . . . . . . . 18  |-  (/)  e.  2o
41 nnaordi 6476 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2o  e.  om  /\  z  e.  om )  ->  ( (/)  e.  2o  ->  ( z  +o  (/) )  e.  ( z  +o  2o ) ) )
429, 41mpan 421 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  om  ->  ( (/) 
e.  2o  ->  ( z  +o  (/) )  e.  ( z  +o  2o ) ) )
4340, 42mpi 15 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  om  ->  (
z  +o  (/) )  e.  ( z  +o  2o ) )
4433, 43eqeltrrd 2244 . . . . . . . . . . . . . . . 16  |-  ( z  e.  om  ->  z  e.  ( z  +o  2o ) )
453, 44syl 14 . . . . . . . . . . . . . . 15  |-  ( z  e.  N.  ->  z  e.  ( z  +o  2o ) )
4645, 23eleqtrrd 2246 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  z  e.  ( z  +N  2o ) )
47 ltpiord 7260 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  N.  /\  ( z  +N  2o )  e.  N. )  ->  ( z  <N  (
z  +N  2o )  <-> 
z  e.  ( z  +N  2o ) ) )
4826, 47mpdan 418 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  (
z  <N  ( z  +N  2o )  <->  z  e.  ( z  +N  2o ) ) )
4946, 48mpbird 166 . . . . . . . . . . . . 13  |-  ( z  e.  N.  ->  z  <N  ( z  +N  2o ) )
50 mulidpi 7259 . . . . . . . . . . . . 13  |-  ( z  e.  N.  ->  (
z  .N  1o )  =  z )
51 mulcompig 7272 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  +N  2o )  e.  N.  /\  1o  e.  N. )  ->  (
( z  +N  2o )  .N  1o )  =  ( 1o  .N  (
z  +N  2o ) ) )
524, 51mpan2 422 . . . . . . . . . . . . . . 15  |-  ( ( z  +N  2o )  e.  N.  ->  (
( z  +N  2o )  .N  1o )  =  ( 1o  .N  (
z  +N  2o ) ) )
5326, 52syl 14 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  (
( z  +N  2o )  .N  1o )  =  ( 1o  .N  (
z  +N  2o ) ) )
54 mulidpi 7259 . . . . . . . . . . . . . . 15  |-  ( ( z  +N  2o )  e.  N.  ->  (
( z  +N  2o )  .N  1o )  =  ( z  +N  2o ) )
5526, 54syl 14 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  (
( z  +N  2o )  .N  1o )  =  ( z  +N  2o ) )
5653, 55eqtr3d 2200 . . . . . . . . . . . . 13  |-  ( z  e.  N.  ->  ( 1o  .N  ( z  +N  2o ) )  =  ( z  +N  2o ) )
5749, 50, 563brtr4d 4014 . . . . . . . . . . . 12  |-  ( z  e.  N.  ->  (
z  .N  1o ) 
<N  ( 1o  .N  (
z  +N  2o ) ) )
58 ordpipqqs 7315 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  N.  /\  1o  e.  N. )  /\  ( ( z  +N  2o )  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( 1o  .N  (
z  +N  2o ) ) ) )
594, 58mpanl2 432 . . . . . . . . . . . . . 14  |-  ( ( z  e.  N.  /\  ( ( z  +N  2o )  e.  N.  /\  1o  e.  N. )
)  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( 1o  .N  (
z  +N  2o ) ) ) )
604, 59mpanr2 435 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  ( z  +N  2o )  e.  N. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( 1o  .N  (
z  +N  2o ) ) ) )
6126, 60mpdan 418 . . . . . . . . . . . 12  |-  ( z  e.  N.  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( z  .N  1o ) 
<N  ( 1o  .N  (
z  +N  2o ) ) ) )
6257, 61mpbird 166 . . . . . . . . . . 11  |-  ( z  e.  N.  ->  [ <. z ,  1o >. ]  ~Q  <Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  )
6362adantl 275 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  [ <. z ,  1o >. ]  ~Q  <Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  )
64 opelxpi 4636 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  +N  2o )  e.  N.  /\  1o  e.  N. )  ->  <. (
z  +N  2o ) ,  1o >.  e.  ( N.  X.  N. )
)
654, 64mpan2 422 . . . . . . . . . . . . . . 15  |-  ( ( z  +N  2o )  e.  N.  ->  <. (
z  +N  2o ) ,  1o >.  e.  ( N.  X.  N. )
)
66 enqex 7301 . . . . . . . . . . . . . . . 16  |-  ~Q  e.  _V
6766ecelqsi 6555 . . . . . . . . . . . . . . 15  |-  ( <.
( z  +N  2o ) ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
6826, 65, 673syl 17 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
69 df-nqqs 7289 . . . . . . . . . . . . . 14  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
7068, 69eleqtrrdi 2260 . . . . . . . . . . . . 13  |-  ( z  e.  N.  ->  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  Q. )
71 opelxpi 4636 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  N.  /\  1o  e.  N. )  ->  <. z ,  1o >.  e.  ( N.  X.  N. ) )
724, 71mpan2 422 . . . . . . . . . . . . . . . 16  |-  ( z  e.  N.  ->  <. z ,  1o >.  e.  ( N.  X.  N. ) )
7366ecelqsi 6555 . . . . . . . . . . . . . . . 16  |-  ( <.
z ,  1o >.  e.  ( N.  X.  N. )  ->  [ <. z ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
7472, 73syl 14 . . . . . . . . . . . . . . 15  |-  ( z  e.  N.  ->  [ <. z ,  1o >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
7574, 69eleqtrrdi 2260 . . . . . . . . . . . . . 14  |-  ( z  e.  N.  ->  [ <. z ,  1o >. ]  ~Q  e.  Q. )
76 ltmnqg 7342 . . . . . . . . . . . . . 14  |-  ( ( [ <. z ,  1o >. ]  ~Q  e.  Q.  /\ 
[ <. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  Q.  /\  C  e.  Q. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  ) ) )
7775, 76syl3an1 1261 . . . . . . . . . . . . 13  |-  ( ( z  e.  N.  /\  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  Q.  /\  C  e. 
Q. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  ) ) )
7870, 77syl3an2 1262 . . . . . . . . . . . 12  |-  ( ( z  e.  N.  /\  z  e.  N.  /\  C  e.  Q. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  ) ) )
79783anidm12 1285 . . . . . . . . . . 11  |-  ( ( z  e.  N.  /\  C  e.  Q. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  ) ) )
8079ancoms 266 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( [ <. z ,  1o >. ]  ~Q  <Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  <->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  ) ) )
8163, 80mpbid 146 . . . . . . . . 9  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  <Q  ( C  .Q  [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  ) )
82 mulcomnqg 7324 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  [
<. z ,  1o >. ]  ~Q  e.  Q. )  ->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  =  ( [ <. z ,  1o >. ]  ~Q  .Q  C
) )
8375, 82sylan2 284 . . . . . . . . 9  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( C  .Q  [ <. z ,  1o >. ]  ~Q  )  =  ( [ <. z ,  1o >. ]  ~Q  .Q  C
) )
84 mulcomnqg 7324 . . . . . . . . . 10  |-  ( ( C  e.  Q.  /\  [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  Q. )  ->  ( C  .Q  [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  )  =  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
8570, 84sylan2 284 . . . . . . . . 9  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( C  .Q  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  )  =  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
8681, 83, 853brtr3d 4013 . . . . . . . 8  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) )
87863ad2antl3 1151 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) )
8887adantrr 471 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  ( [ <. z ,  1o >. ]  ~Q  .Q  C
)  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
89 ltsonq 7339 . . . . . . . . . 10  |-  <Q  Or  Q.
90 ltrelnq 7306 . . . . . . . . . 10  |-  <Q  C_  ( Q.  X.  Q. )
9189, 90sotri 4999 . . . . . . . . 9  |-  ( ( A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C )  /\  ( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) )  ->  A  <Q  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
9291ex 114 . . . . . . . 8  |-  ( A 
<Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C )  ->  (
( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
)  ->  A  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) )
9392adantl 275 . . . . . . 7  |-  ( ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) )  -> 
( ( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
)  ->  A  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) )
9493adantl 275 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  (
( [ <. z ,  1o >. ]  ~Q  .Q  C )  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
)  ->  A  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) )
9588, 94mpd 13 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  A  <Q  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
96 mulclnq 7317 . . . . . . . . . 10  |-  ( ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  e.  Q.  /\  C  e.  Q. )  ->  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q. )
9770, 96sylan 281 . . . . . . . . 9  |-  ( ( z  e.  N.  /\  C  e.  Q. )  ->  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q. )
9897ancoms 266 . . . . . . . 8  |-  ( ( C  e.  Q.  /\  z  e.  N. )  ->  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q. )
99983ad2antl3 1151 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q. )
100 simpl2 991 . . . . . . 7  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  B  e.  Q. )
101 ltaddnq 7348 . . . . . . 7  |-  ( ( ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q.  /\  B  e.  Q. )  ->  ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  <Q  (
( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )
10299, 100, 101syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  <Q  (
( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )
103102adantrr 471 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
)  <Q  ( ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )
10489, 90sotri 4999 . . . . 5  |-  ( ( A  <Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  /\  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
)  <Q  ( ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )  ->  A  <Q  ( ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )
10595, 103, 104syl2anc 409 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  A  <Q  ( ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
) )
106 addcomnqg 7322 . . . . . . 7  |-  ( ( ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  e.  Q.  /\  B  e.  Q. )  ->  ( ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
)  =  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) )
10799, 100, 106syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
)  =  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) )
108107breq2d 3994 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( A  <Q  ( ( [ <. (
z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
)  <->  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) ) )
109108adantrr 471 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  ( A  <Q  ( ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C )  +Q  B
)  <->  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) ) )
110105, 109mpbid 146 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) )
111 simpr 109 . . . . 5  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  z  e.  N. )
112 breq2 3986 . . . . . . . 8  |-  ( x  =  ( z  +N  2o )  ->  ( 1o  <N  x  <->  1o  <N  ( z  +N  2o ) ) )
113 opeq1 3758 . . . . . . . . . . . 12  |-  ( x  =  ( z  +N  2o )  ->  <. x ,  1o >.  =  <. ( z  +N  2o ) ,  1o >. )
114113eceq1d 6537 . . . . . . . . . . 11  |-  ( x  =  ( z  +N  2o )  ->  [ <. x ,  1o >. ]  ~Q  =  [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  )
115114oveq1d 5857 . . . . . . . . . 10  |-  ( x  =  ( z  +N  2o )  ->  ( [ <. x ,  1o >. ]  ~Q  .Q  C
)  =  ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) )
116115oveq2d 5858 . . . . . . . . 9  |-  ( x  =  ( z  +N  2o )  ->  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C ) )  =  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) )
117116breq2d 3994 . . . . . . . 8  |-  ( x  =  ( z  +N  2o )  ->  ( A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C
) )  <->  A  <Q  ( B  +Q  ( [
<. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) ) )
118112, 117anbi12d 465 . . . . . . 7  |-  ( x  =  ( z  +N  2o )  ->  (
( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C ) ) )  <-> 
( 1o  <N  (
z  +N  2o )  /\  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) ) ) )
119118rspcev 2830 . . . . . 6  |-  ( ( ( z  +N  2o )  e.  N.  /\  ( 1o  <N  ( z  +N  2o )  /\  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C
) ) ) )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C
) ) ) )
120119ex 114 . . . . 5  |-  ( ( z  +N  2o )  e.  N.  ->  (
( 1o  <N  (
z  +N  2o )  /\  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C
) ) ) ) )
121111, 26, 1203syl 17 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  z  e.  N. )  ->  ( ( 1o 
<N  ( z  +N  2o )  /\  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C
) ) ) ) )
122121adantrr 471 . . 3  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  (
( 1o  <N  (
z  +N  2o )  /\  A  <Q  ( B  +Q  ( [ <. ( z  +N  2o ) ,  1o >. ]  ~Q  .Q  C ) ) )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C
) ) ) ) )
12332, 110, 122mp2and 430 . 2  |-  ( ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  /\  ( z  e.  N.  /\  A  <Q  ( [ <. z ,  1o >. ]  ~Q  .Q  C ) ) )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C ) ) ) )
1242, 123rexlimddv 2588 1  |-  ( ( A  e.  Q.  /\  B  e.  Q.  /\  C  e.  Q. )  ->  E. x  e.  N.  ( 1o  <N  x  /\  A  <Q  ( B  +Q  ( [ <. x ,  1o >. ]  ~Q  .Q  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   E.wrex 2445    C_ wss 3116   (/)c0 3409   <.cop 3579   class class class wbr 3982   Oncon0 4341   suc csuc 4343   omcom 4567    X. cxp 4602  (class class class)co 5842   1oc1o 6377   2oc2o 6378    +o coa 6381   [cec 6499   /.cqs 6500   N.cnpi 7213    +N cpli 7214    .N cmi 7215    <N clti 7216    ~Q ceq 7220   Q.cnq 7221    +Q cplq 7223    .Q cmq 7224    <Q cltq 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294
This theorem is referenced by:  prarloc  7444
  Copyright terms: Public domain W3C validator