ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsq Unicode version

Theorem subsq 10582
Description: Factor the difference of two squares. (Contributed by NM, 21-Feb-2008.)
Assertion
Ref Expression
subsq  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  -  ( B ^ 2 ) )  =  ( ( A  +  B )  x.  ( A  -  B
) ) )

Proof of Theorem subsq
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
2 simpr 109 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
3 subcl 8118 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
41, 2, 3adddird 7945 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  ( A  -  B )
)  =  ( ( A  x.  ( A  -  B ) )  +  ( B  x.  ( A  -  B
) ) ) )
5 subdi 8304 . . . . 5  |-  ( ( A  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( A  -  B ) )  =  ( ( A  x.  A )  -  ( A  x.  B )
) )
653anidm12 1290 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( A  -  B )
)  =  ( ( A  x.  A )  -  ( A  x.  B ) ) )
7 sqval 10534 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 2 )  =  ( A  x.  A
) )
87adantr 274 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  =  ( A  x.  A ) )
98oveq1d 5868 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  -  ( A  x.  B )
)  =  ( ( A  x.  A )  -  ( A  x.  B ) ) )
106, 9eqtr4d 2206 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( A  -  B )
)  =  ( ( A ^ 2 )  -  ( A  x.  B ) ) )
112, 1, 2subdid 8333 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  x.  ( A  -  B )
)  =  ( ( B  x.  A )  -  ( B  x.  B ) ) )
12 mulcom 7903 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
13 sqval 10534 . . . . . 6  |-  ( B  e.  CC  ->  ( B ^ 2 )  =  ( B  x.  B
) )
1413adantl 275 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  =  ( B  x.  B ) )
1512, 14oveq12d 5871 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  -  ( B ^ 2 ) )  =  ( ( B  x.  A )  -  ( B  x.  B
) ) )
1611, 15eqtr4d 2206 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  x.  ( A  -  B )
)  =  ( ( A  x.  B )  -  ( B ^
2 ) ) )
1710, 16oveq12d 5871 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( A  -  B
) )  +  ( B  x.  ( A  -  B ) ) )  =  ( ( ( A ^ 2 )  -  ( A  x.  B ) )  +  ( ( A  x.  B )  -  ( B ^ 2 ) ) ) )
18 sqcl 10537 . . . 4  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
1918adantr 274 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  e.  CC )
20 mulcl 7901 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
21 sqcl 10537 . . . 4  |-  ( B  e.  CC  ->  ( B ^ 2 )  e.  CC )
2221adantl 275 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  e.  CC )
2319, 20, 22npncand 8254 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  -  ( A  x.  B
) )  +  ( ( A  x.  B
)  -  ( B ^ 2 ) ) )  =  ( ( A ^ 2 )  -  ( B ^
2 ) ) )
244, 17, 233eqtrrd 2208 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  -  ( B ^ 2 ) )  =  ( ( A  +  B )  x.  ( A  -  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141  (class class class)co 5853   CCcc 7772    + caddc 7777    x. cmul 7779    - cmin 8090   2c2 8929   ^cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  subsq2  10583  subsqi  10585  resqrexlemnm  10982  resqrexlemglsq  10986  pythagtriplem4  12222  pythagtriplem6  12224  pythagtriplem7  12225  pythagtriplem12  12229  pythagtriplem14  12231  pythagtriplem16  12233  difsqpwdvds  12291  4sqlem8  12337  4sqlem10  12339  lgslem1  13695  2sqlem4  13748
  Copyright terms: Public domain W3C validator