ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fovcl Unicode version

Theorem fovcl 6110
Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Proof shortened by AV, 9-Mar-2025.)
Hypothesis
Ref Expression
fovcl.1  |-  F :
( R  X.  S
) --> C
Assertion
Ref Expression
fovcl  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A F B )  e.  C )

Proof of Theorem fovcl
StepHypRef Expression
1 fovcl.1 . . . 4  |-  F :
( R  X.  S
) --> C
21a1i 9 . . 3  |-  ( A  e.  R  ->  F : ( R  X.  S ) --> C )
32fovcld 6109 . 2  |-  ( ( A  e.  R  /\  A  e.  R  /\  B  e.  S )  ->  ( A F B )  e.  C )
433anidm12 1329 1  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A F B )  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200    X. cxp 4717   -->wf 5314  (class class class)co 6001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004
This theorem is referenced by:  xaddcl  10056  ixxssxr  10096  fzof  10340  elfzoelz  10343  fzoval  10344  addcncntoplem  15235  sgmcl  15661
  Copyright terms: Public domain W3C validator