ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fovcl Unicode version

Theorem fovcl 6053
Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Proof shortened by AV, 9-Mar-2025.)
Hypothesis
Ref Expression
fovcl.1  |-  F :
( R  X.  S
) --> C
Assertion
Ref Expression
fovcl  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A F B )  e.  C )

Proof of Theorem fovcl
StepHypRef Expression
1 fovcl.1 . . . 4  |-  F :
( R  X.  S
) --> C
21a1i 9 . . 3  |-  ( A  e.  R  ->  F : ( R  X.  S ) --> C )
32fovcld 6052 . 2  |-  ( ( A  e.  R  /\  A  e.  R  /\  B  e.  S )  ->  ( A F B )  e.  C )
433anidm12 1308 1  |-  ( ( A  e.  R  /\  B  e.  S )  ->  ( A F B )  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176    X. cxp 4674   -->wf 5268  (class class class)co 5946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-ov 5949
This theorem is referenced by:  xaddcl  9984  ixxssxr  10024  fzof  10268  elfzoelz  10271  fzoval  10272  addcncntoplem  15066  sgmcl  15492
  Copyright terms: Public domain W3C validator