| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expib | Unicode version | ||
| Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3expib |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3exp 1205 |
. 2
|
| 3 | 2 | impd 254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3anidm12 1308 mob 2962 eqbrrdva 4866 funimaexglem 5376 fco 5461 f1oiso2 5919 caovimo 6163 smoel2 6412 nnaword 6620 3ecoptocl 6734 rex2dom 6934 sbthlemi10 7094 distrnq0 7607 addassnq0 7610 prcdnql 7632 prcunqu 7633 genpdisj 7671 cauappcvgprlemrnd 7798 caucvgprlemrnd 7821 caucvgprprlemrnd 7849 nn0n0n1ge2b 9487 fzind 9523 icoshft 10147 fzen 10200 seq3coll 11024 shftuz 11243 mulgcd 12452 algcvga 12488 lcmneg 12511 isnmgm 13307 gsummgmpropd 13341 issgrpd 13359 iscmnd 13749 unitmulclb 13991 rmodislmodlem 14227 rmodislmod 14228 blssps 15014 blss 15015 metcnp3 15098 sincosq1sgn 15413 sincosq2sgn 15414 sincosq3sgn 15415 sincosq4sgn 15416 |
| Copyright terms: Public domain | W3C validator |