ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3expib Unicode version

Theorem 3expib 1230
Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.)
Hypothesis
Ref Expression
3exp.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
Assertion
Ref Expression
3expib  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)

Proof of Theorem 3expib
StepHypRef Expression
1 3exp.1 . . 3  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
213exp 1226 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
32impd 254 1  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  3anidm12  1329  mob  2985  eqbrrdva  4891  funimaexglem  5403  fco  5488  f1oiso2  5950  caovimo  6198  smoel2  6447  nnaword  6655  3ecoptocl  6769  rex2dom  6969  sbthlemi10  7129  distrnq0  7642  addassnq0  7645  prcdnql  7667  prcunqu  7668  genpdisj  7706  cauappcvgprlemrnd  7833  caucvgprlemrnd  7856  caucvgprprlemrnd  7884  nn0n0n1ge2b  9522  fzind  9558  icoshft  10182  fzen  10235  seq3coll  11059  shftuz  11323  mulgcd  12532  algcvga  12568  lcmneg  12591  isnmgm  13388  gsummgmpropd  13422  issgrpd  13440  iscmnd  13830  unitmulclb  14072  rmodislmodlem  14308  rmodislmod  14309  blssps  15095  blss  15096  metcnp3  15179  sincosq1sgn  15494  sincosq2sgn  15495  sincosq3sgn  15496  sincosq4sgn  15497  iswlkg  16032
  Copyright terms: Public domain W3C validator