| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expib | Unicode version | ||
| Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
| Ref | Expression |
|---|---|
| 3exp.1 |
|
| Ref | Expression |
|---|---|
| 3expib |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 |
. . 3
| |
| 2 | 1 | 3exp 1226 |
. 2
|
| 3 | 2 | impd 254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3anidm12 1329 mob 2985 eqbrrdva 4891 funimaexglem 5403 fco 5488 f1oiso2 5950 caovimo 6198 smoel2 6447 nnaword 6655 3ecoptocl 6769 rex2dom 6969 sbthlemi10 7129 distrnq0 7642 addassnq0 7645 prcdnql 7667 prcunqu 7668 genpdisj 7706 cauappcvgprlemrnd 7833 caucvgprlemrnd 7856 caucvgprprlemrnd 7884 nn0n0n1ge2b 9522 fzind 9558 icoshft 10182 fzen 10235 seq3coll 11059 shftuz 11323 mulgcd 12532 algcvga 12568 lcmneg 12591 isnmgm 13388 gsummgmpropd 13422 issgrpd 13440 iscmnd 13830 unitmulclb 14072 rmodislmodlem 14308 rmodislmod 14309 blssps 15095 blss 15096 metcnp3 15179 sincosq1sgn 15494 sincosq2sgn 15495 sincosq3sgn 15496 sincosq4sgn 15497 iswlkg 16032 |
| Copyright terms: Public domain | W3C validator |