| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > coprm | Unicode version | ||
| Description: A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| coprm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmz 12433 |
. . . . . . 7
| |
| 2 | gcddvds 12284 |
. . . . . . 7
| |
| 3 | 1, 2 | sylan 283 |
. . . . . 6
|
| 4 | 3 | simprd 114 |
. . . . 5
|
| 5 | breq1 4047 |
. . . . 5
| |
| 6 | 4, 5 | syl5ibcom 155 |
. . . 4
|
| 7 | 6 | con3d 632 |
. . 3
|
| 8 | 0nnn 9063 |
. . . . . . . . 9
| |
| 9 | prmnn 12432 |
. . . . . . . . . 10
| |
| 10 | eleq1 2268 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | syl5ibcom 155 |
. . . . . . . . 9
|
| 12 | 8, 11 | mtoi 666 |
. . . . . . . 8
|
| 13 | 12 | intnanrd 934 |
. . . . . . 7
|
| 14 | 13 | adantr 276 |
. . . . . 6
|
| 15 | gcdn0cl 12283 |
. . . . . . . 8
| |
| 16 | 15 | ex 115 |
. . . . . . 7
|
| 17 | 1, 16 | sylan 283 |
. . . . . 6
|
| 18 | 14, 17 | mpd 13 |
. . . . 5
|
| 19 | 3 | simpld 112 |
. . . . 5
|
| 20 | isprm2 12439 |
. . . . . . . 8
| |
| 21 | 20 | simprbi 275 |
. . . . . . 7
|
| 22 | breq1 4047 |
. . . . . . . . 9
| |
| 23 | eqeq1 2212 |
. . . . . . . . . 10
| |
| 24 | eqeq1 2212 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | orbi12d 795 |
. . . . . . . . 9
|
| 26 | 22, 25 | imbi12d 234 |
. . . . . . . 8
|
| 27 | 26 | rspcv 2873 |
. . . . . . 7
|
| 28 | 21, 27 | syl5com 29 |
. . . . . 6
|
| 29 | 28 | adantr 276 |
. . . . 5
|
| 30 | 18, 19, 29 | mp2d 47 |
. . . 4
|
| 31 | biorf 746 |
. . . . 5
| |
| 32 | orcom 730 |
. . . . 5
| |
| 33 | 31, 32 | bitrdi 196 |
. . . 4
|
| 34 | 30, 33 | syl5ibrcom 157 |
. . 3
|
| 35 | 7, 34 | syld 45 |
. 2
|
| 36 | iddvds 12115 |
. . . . . . 7
| |
| 37 | 1, 36 | syl 14 |
. . . . . 6
|
| 38 | 37 | adantr 276 |
. . . . 5
|
| 39 | dvdslegcd 12285 |
. . . . . . . . 9
| |
| 40 | 39 | ex 115 |
. . . . . . . 8
|
| 41 | 40 | 3anidm12 1308 |
. . . . . . 7
|
| 42 | 1, 41 | sylan 283 |
. . . . . 6
|
| 43 | 14, 42 | mpd 13 |
. . . . 5
|
| 44 | 38, 43 | mpand 429 |
. . . 4
|
| 45 | prmgt1 12454 |
. . . . . 6
| |
| 46 | 45 | adantr 276 |
. . . . 5
|
| 47 | 1 | zred 9495 |
. . . . . . 7
|
| 48 | 47 | adantr 276 |
. . . . . 6
|
| 49 | 18 | nnred 9049 |
. . . . . 6
|
| 50 | 1re 8071 |
. . . . . . 7
| |
| 51 | ltletr 8162 |
. . . . . . 7
| |
| 52 | 50, 51 | mp3an1 1337 |
. . . . . 6
|
| 53 | 48, 49, 52 | syl2anc 411 |
. . . . 5
|
| 54 | 46, 53 | mpand 429 |
. . . 4
|
| 55 | ltne 8157 |
. . . . . 6
| |
| 56 | 50, 55 | mpan 424 |
. . . . 5
|
| 57 | 56 | a1i 9 |
. . . 4
|
| 58 | 44, 54, 57 | 3syld 57 |
. . 3
|
| 59 | 58 | necon2bd 2434 |
. 2
|
| 60 | 35, 59 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-1o 6502 df-2o 6503 df-er 6620 df-en 6828 df-sup 7086 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-fz 10131 df-fzo 10265 df-fl 10413 df-mod 10468 df-seqfrec 10593 df-exp 10684 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-dvds 12099 df-gcd 12275 df-prm 12430 |
| This theorem is referenced by: prmrp 12467 euclemma 12468 cncongrprm 12479 isoddgcd1 12481 phiprmpw 12544 fermltl 12556 prmdiv 12557 prmdiveq 12558 vfermltl 12574 prmpwdvds 12678 perfect1 15470 perfectlem1 15471 perfectlem2 15472 lgslem1 15477 lgsprme0 15519 gausslemma2dlem0c 15528 lgseisenlem3 15549 lgsquad2lem2 15559 |
| Copyright terms: Public domain | W3C validator |