| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > coprm | Unicode version | ||
| Description: A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| coprm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmz 12548 |
. . . . . . 7
| |
| 2 | gcddvds 12399 |
. . . . . . 7
| |
| 3 | 1, 2 | sylan 283 |
. . . . . 6
|
| 4 | 3 | simprd 114 |
. . . . 5
|
| 5 | breq1 4062 |
. . . . 5
| |
| 6 | 4, 5 | syl5ibcom 155 |
. . . 4
|
| 7 | 6 | con3d 632 |
. . 3
|
| 8 | 0nnn 9098 |
. . . . . . . . 9
| |
| 9 | prmnn 12547 |
. . . . . . . . . 10
| |
| 10 | eleq1 2270 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | syl5ibcom 155 |
. . . . . . . . 9
|
| 12 | 8, 11 | mtoi 666 |
. . . . . . . 8
|
| 13 | 12 | intnanrd 934 |
. . . . . . 7
|
| 14 | 13 | adantr 276 |
. . . . . 6
|
| 15 | gcdn0cl 12398 |
. . . . . . . 8
| |
| 16 | 15 | ex 115 |
. . . . . . 7
|
| 17 | 1, 16 | sylan 283 |
. . . . . 6
|
| 18 | 14, 17 | mpd 13 |
. . . . 5
|
| 19 | 3 | simpld 112 |
. . . . 5
|
| 20 | isprm2 12554 |
. . . . . . . 8
| |
| 21 | 20 | simprbi 275 |
. . . . . . 7
|
| 22 | breq1 4062 |
. . . . . . . . 9
| |
| 23 | eqeq1 2214 |
. . . . . . . . . 10
| |
| 24 | eqeq1 2214 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | orbi12d 795 |
. . . . . . . . 9
|
| 26 | 22, 25 | imbi12d 234 |
. . . . . . . 8
|
| 27 | 26 | rspcv 2880 |
. . . . . . 7
|
| 28 | 21, 27 | syl5com 29 |
. . . . . 6
|
| 29 | 28 | adantr 276 |
. . . . 5
|
| 30 | 18, 19, 29 | mp2d 47 |
. . . 4
|
| 31 | biorf 746 |
. . . . 5
| |
| 32 | orcom 730 |
. . . . 5
| |
| 33 | 31, 32 | bitrdi 196 |
. . . 4
|
| 34 | 30, 33 | syl5ibrcom 157 |
. . 3
|
| 35 | 7, 34 | syld 45 |
. 2
|
| 36 | iddvds 12230 |
. . . . . . 7
| |
| 37 | 1, 36 | syl 14 |
. . . . . 6
|
| 38 | 37 | adantr 276 |
. . . . 5
|
| 39 | dvdslegcd 12400 |
. . . . . . . . 9
| |
| 40 | 39 | ex 115 |
. . . . . . . 8
|
| 41 | 40 | 3anidm12 1308 |
. . . . . . 7
|
| 42 | 1, 41 | sylan 283 |
. . . . . 6
|
| 43 | 14, 42 | mpd 13 |
. . . . 5
|
| 44 | 38, 43 | mpand 429 |
. . . 4
|
| 45 | prmgt1 12569 |
. . . . . 6
| |
| 46 | 45 | adantr 276 |
. . . . 5
|
| 47 | 1 | zred 9530 |
. . . . . . 7
|
| 48 | 47 | adantr 276 |
. . . . . 6
|
| 49 | 18 | nnred 9084 |
. . . . . 6
|
| 50 | 1re 8106 |
. . . . . . 7
| |
| 51 | ltletr 8197 |
. . . . . . 7
| |
| 52 | 50, 51 | mp3an1 1337 |
. . . . . 6
|
| 53 | 48, 49, 52 | syl2anc 411 |
. . . . 5
|
| 54 | 46, 53 | mpand 429 |
. . . 4
|
| 55 | ltne 8192 |
. . . . . 6
| |
| 56 | 50, 55 | mpan 424 |
. . . . 5
|
| 57 | 56 | a1i 9 |
. . . 4
|
| 58 | 44, 54, 57 | 3syld 57 |
. . 3
|
| 59 | 58 | necon2bd 2436 |
. 2
|
| 60 | 35, 59 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-1o 6525 df-2o 6526 df-er 6643 df-en 6851 df-sup 7112 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-fl 10450 df-mod 10505 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-dvds 12214 df-gcd 12390 df-prm 12545 |
| This theorem is referenced by: prmrp 12582 euclemma 12583 cncongrprm 12594 isoddgcd1 12596 phiprmpw 12659 fermltl 12671 prmdiv 12672 prmdiveq 12673 vfermltl 12689 prmpwdvds 12793 perfect1 15585 perfectlem1 15586 perfectlem2 15587 lgslem1 15592 lgsprme0 15634 gausslemma2dlem0c 15643 lgseisenlem3 15664 lgsquad2lem2 15674 |
| Copyright terms: Public domain | W3C validator |