ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprm Unicode version

Theorem coprm 12158
Description: A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
coprm  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )

Proof of Theorem coprm
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 prmz 12125 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ZZ )
2 gcddvds 11978 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( P  gcd  N )  ||  P  /\  ( P  gcd  N ) 
||  N ) )
31, 2sylan 283 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  ||  P  /\  ( P  gcd  N ) 
||  N ) )
43simprd 114 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  ||  N )
5 breq1 4018 . . . . 5  |-  ( ( P  gcd  N )  =  P  ->  (
( P  gcd  N
)  ||  N  <->  P  ||  N
) )
64, 5syl5ibcom 155 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  =  P  ->  P  ||  N ) )
76con3d 632 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  ->  -.  ( P  gcd  N
)  =  P ) )
8 0nnn 8960 . . . . . . . . 9  |-  -.  0  e.  NN
9 prmnn 12124 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
10 eleq1 2250 . . . . . . . . . 10  |-  ( P  =  0  ->  ( P  e.  NN  <->  0  e.  NN ) )
119, 10syl5ibcom 155 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( P  =  0  ->  0  e.  NN ) )
128, 11mtoi 665 . . . . . . . 8  |-  ( P  e.  Prime  ->  -.  P  =  0 )
1312intnanrd 933 . . . . . . 7  |-  ( P  e.  Prime  ->  -.  ( P  =  0  /\  N  =  0 ) )
1413adantr 276 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  -.  ( P  =  0  /\  N  =  0
) )
15 gcdn0cl 11977 . . . . . . . 8  |-  ( ( ( P  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( P  =  0  /\  N  =  0 ) )  ->  ( P  gcd  N )  e.  NN )
1615ex 115 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  -> 
( P  gcd  N
)  e.  NN ) )
171, 16sylan 283 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  ->  ( P  gcd  N )  e.  NN ) )
1814, 17mpd 13 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  e.  NN )
193simpld 112 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  ||  P )
20 isprm2 12131 . . . . . . . 8  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2120simprbi 275 . . . . . . 7  |-  ( P  e.  Prime  ->  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
22 breq1 4018 . . . . . . . . 9  |-  ( z  =  ( P  gcd  N )  ->  ( z  ||  P  <->  ( P  gcd  N )  ||  P ) )
23 eqeq1 2194 . . . . . . . . . 10  |-  ( z  =  ( P  gcd  N )  ->  ( z  =  1  <->  ( P  gcd  N )  =  1 ) )
24 eqeq1 2194 . . . . . . . . . 10  |-  ( z  =  ( P  gcd  N )  ->  ( z  =  P  <->  ( P  gcd  N )  =  P ) )
2523, 24orbi12d 794 . . . . . . . . 9  |-  ( z  =  ( P  gcd  N )  ->  ( (
z  =  1  \/  z  =  P )  <-> 
( ( P  gcd  N )  =  1  \/  ( P  gcd  N
)  =  P ) ) )
2622, 25imbi12d 234 . . . . . . . 8  |-  ( z  =  ( P  gcd  N )  ->  ( (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  <->  ( ( P  gcd  N )  ||  P  ->  ( ( P  gcd  N )  =  1  \/  ( P  gcd  N )  =  P ) ) ) )
2726rspcv 2849 . . . . . . 7  |-  ( ( P  gcd  N )  e.  NN  ->  ( A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  ->  (
( P  gcd  N
)  ||  P  ->  ( ( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) ) )
2821, 27syl5com 29 . . . . . 6  |-  ( P  e.  Prime  ->  ( ( P  gcd  N )  e.  NN  ->  (
( P  gcd  N
)  ||  P  ->  ( ( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) ) )
2928adantr 276 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  e.  NN  ->  ( ( P  gcd  N
)  ||  P  ->  ( ( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) ) )
3018, 19, 29mp2d 47 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) )
31 biorf 745 . . . . 5  |-  ( -.  ( P  gcd  N
)  =  P  -> 
( ( P  gcd  N )  =  1  <->  (
( P  gcd  N
)  =  P  \/  ( P  gcd  N )  =  1 ) ) )
32 orcom 729 . . . . 5  |-  ( ( ( P  gcd  N
)  =  P  \/  ( P  gcd  N )  =  1 )  <->  ( ( P  gcd  N )  =  1  \/  ( P  gcd  N )  =  P ) )
3331, 32bitrdi 196 . . . 4  |-  ( -.  ( P  gcd  N
)  =  P  -> 
( ( P  gcd  N )  =  1  <->  (
( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) )
3430, 33syl5ibrcom 157 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  ( P  gcd  N
)  =  P  -> 
( P  gcd  N
)  =  1 ) )
357, 34syld 45 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  -> 
( P  gcd  N
)  =  1 ) )
36 iddvds 11825 . . . . . . 7  |-  ( P  e.  ZZ  ->  P  ||  P )
371, 36syl 14 . . . . . 6  |-  ( P  e.  Prime  ->  P  ||  P )
3837adantr 276 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  P  ||  P )
39 dvdslegcd 11979 . . . . . . . . 9  |-  ( ( ( P  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( P  =  0  /\  N  =  0 ) )  -> 
( ( P  ||  P  /\  P  ||  N
)  ->  P  <_  ( P  gcd  N ) ) )
4039ex 115 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  ->  ( ( P  ||  P  /\  P  ||  N )  ->  P  <_  ( P  gcd  N
) ) ) )
41403anidm12 1305 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  -> 
( ( P  ||  P  /\  P  ||  N
)  ->  P  <_  ( P  gcd  N ) ) ) )
421, 41sylan 283 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  ->  ( ( P  ||  P  /\  P  ||  N )  ->  P  <_  ( P  gcd  N
) ) ) )
4314, 42mpd 13 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  ||  P  /\  P  ||  N )  ->  P  <_  ( P  gcd  N ) ) )
4438, 43mpand 429 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  ||  N  ->  P  <_  ( P  gcd  N
) ) )
45 prmgt1 12146 . . . . . 6  |-  ( P  e.  Prime  ->  1  < 
P )
4645adantr 276 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  1  <  P )
471zred 9389 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  RR )
4847adantr 276 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  P  e.  RR )
4918nnred 8946 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  e.  RR )
50 1re 7970 . . . . . . 7  |-  1  e.  RR
51 ltletr 8061 . . . . . . 7  |-  ( ( 1  e.  RR  /\  P  e.  RR  /\  ( P  gcd  N )  e.  RR )  ->  (
( 1  <  P  /\  P  <_  ( P  gcd  N ) )  ->  1  <  ( P  gcd  N ) ) )
5250, 51mp3an1 1334 . . . . . 6  |-  ( ( P  e.  RR  /\  ( P  gcd  N )  e.  RR )  -> 
( ( 1  < 
P  /\  P  <_  ( P  gcd  N ) )  ->  1  <  ( P  gcd  N ) ) )
5348, 49, 52syl2anc 411 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( 1  <  P  /\  P  <_  ( P  gcd  N ) )  ->  1  <  ( P  gcd  N ) ) )
5446, 53mpand 429 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  <_  ( P  gcd  N )  ->  1  <  ( P  gcd  N ) ) )
55 ltne 8056 . . . . . 6  |-  ( ( 1  e.  RR  /\  1  <  ( P  gcd  N ) )  ->  ( P  gcd  N )  =/=  1 )
5650, 55mpan 424 . . . . 5  |-  ( 1  <  ( P  gcd  N )  ->  ( P  gcd  N )  =/=  1
)
5756a1i 9 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
1  <  ( P  gcd  N )  ->  ( P  gcd  N )  =/=  1 ) )
5844, 54, 573syld 57 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  ||  N  ->  ( P  gcd  N )  =/=  1 ) )
5958necon2bd 2415 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  =  1  ->  -.  P  ||  N ) )
6035, 59impbid 129 1  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 979    = wceq 1363    e. wcel 2158    =/= wne 2357   A.wral 2465   class class class wbr 4015   ` cfv 5228  (class class class)co 5888   RRcr 7824   0cc0 7825   1c1 7826    < clt 8006    <_ cle 8007   NNcn 8933   2c2 8984   ZZcz 9267   ZZ>=cuz 9542    || cdvds 11808    gcd cgcd 11957   Primecprime 12121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-1o 6431  df-2o 6432  df-er 6549  df-en 6755  df-sup 6997  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-fz 10023  df-fzo 10157  df-fl 10284  df-mod 10337  df-seqfrec 10460  df-exp 10534  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-dvds 11809  df-gcd 11958  df-prm 12122
This theorem is referenced by:  prmrp  12159  euclemma  12160  cncongrprm  12171  isoddgcd1  12173  phiprmpw  12236  fermltl  12248  prmdiv  12249  prmdiveq  12250  vfermltl  12265  prmpwdvds  12367  lgslem1  14697  lgsprme0  14739
  Copyright terms: Public domain W3C validator