ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprm Unicode version

Theorem coprm 12661
Description: A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
coprm  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )

Proof of Theorem coprm
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 prmz 12628 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ZZ )
2 gcddvds 12479 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( P  gcd  N )  ||  P  /\  ( P  gcd  N ) 
||  N ) )
31, 2sylan 283 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  ||  P  /\  ( P  gcd  N ) 
||  N ) )
43simprd 114 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  ||  N )
5 breq1 4085 . . . . 5  |-  ( ( P  gcd  N )  =  P  ->  (
( P  gcd  N
)  ||  N  <->  P  ||  N
) )
64, 5syl5ibcom 155 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  =  P  ->  P  ||  N ) )
76con3d 634 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  ->  -.  ( P  gcd  N
)  =  P ) )
8 0nnn 9133 . . . . . . . . 9  |-  -.  0  e.  NN
9 prmnn 12627 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
10 eleq1 2292 . . . . . . . . . 10  |-  ( P  =  0  ->  ( P  e.  NN  <->  0  e.  NN ) )
119, 10syl5ibcom 155 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( P  =  0  ->  0  e.  NN ) )
128, 11mtoi 668 . . . . . . . 8  |-  ( P  e.  Prime  ->  -.  P  =  0 )
1312intnanrd 937 . . . . . . 7  |-  ( P  e.  Prime  ->  -.  ( P  =  0  /\  N  =  0 ) )
1413adantr 276 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  -.  ( P  =  0  /\  N  =  0
) )
15 gcdn0cl 12478 . . . . . . . 8  |-  ( ( ( P  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( P  =  0  /\  N  =  0 ) )  ->  ( P  gcd  N )  e.  NN )
1615ex 115 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  -> 
( P  gcd  N
)  e.  NN ) )
171, 16sylan 283 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  ->  ( P  gcd  N )  e.  NN ) )
1814, 17mpd 13 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  e.  NN )
193simpld 112 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  ||  P )
20 isprm2 12634 . . . . . . . 8  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2120simprbi 275 . . . . . . 7  |-  ( P  e.  Prime  ->  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
22 breq1 4085 . . . . . . . . 9  |-  ( z  =  ( P  gcd  N )  ->  ( z  ||  P  <->  ( P  gcd  N )  ||  P ) )
23 eqeq1 2236 . . . . . . . . . 10  |-  ( z  =  ( P  gcd  N )  ->  ( z  =  1  <->  ( P  gcd  N )  =  1 ) )
24 eqeq1 2236 . . . . . . . . . 10  |-  ( z  =  ( P  gcd  N )  ->  ( z  =  P  <->  ( P  gcd  N )  =  P ) )
2523, 24orbi12d 798 . . . . . . . . 9  |-  ( z  =  ( P  gcd  N )  ->  ( (
z  =  1  \/  z  =  P )  <-> 
( ( P  gcd  N )  =  1  \/  ( P  gcd  N
)  =  P ) ) )
2622, 25imbi12d 234 . . . . . . . 8  |-  ( z  =  ( P  gcd  N )  ->  ( (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  <->  ( ( P  gcd  N )  ||  P  ->  ( ( P  gcd  N )  =  1  \/  ( P  gcd  N )  =  P ) ) ) )
2726rspcv 2903 . . . . . . 7  |-  ( ( P  gcd  N )  e.  NN  ->  ( A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  ->  (
( P  gcd  N
)  ||  P  ->  ( ( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) ) )
2821, 27syl5com 29 . . . . . 6  |-  ( P  e.  Prime  ->  ( ( P  gcd  N )  e.  NN  ->  (
( P  gcd  N
)  ||  P  ->  ( ( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) ) )
2928adantr 276 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  e.  NN  ->  ( ( P  gcd  N
)  ||  P  ->  ( ( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) ) )
3018, 19, 29mp2d 47 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) )
31 biorf 749 . . . . 5  |-  ( -.  ( P  gcd  N
)  =  P  -> 
( ( P  gcd  N )  =  1  <->  (
( P  gcd  N
)  =  P  \/  ( P  gcd  N )  =  1 ) ) )
32 orcom 733 . . . . 5  |-  ( ( ( P  gcd  N
)  =  P  \/  ( P  gcd  N )  =  1 )  <->  ( ( P  gcd  N )  =  1  \/  ( P  gcd  N )  =  P ) )
3331, 32bitrdi 196 . . . 4  |-  ( -.  ( P  gcd  N
)  =  P  -> 
( ( P  gcd  N )  =  1  <->  (
( P  gcd  N
)  =  1  \/  ( P  gcd  N
)  =  P ) ) )
3430, 33syl5ibrcom 157 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  ( P  gcd  N
)  =  P  -> 
( P  gcd  N
)  =  1 ) )
357, 34syld 45 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  -> 
( P  gcd  N
)  =  1 ) )
36 iddvds 12310 . . . . . . 7  |-  ( P  e.  ZZ  ->  P  ||  P )
371, 36syl 14 . . . . . 6  |-  ( P  e.  Prime  ->  P  ||  P )
3837adantr 276 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  P  ||  P )
39 dvdslegcd 12480 . . . . . . . . 9  |-  ( ( ( P  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( P  =  0  /\  N  =  0 ) )  -> 
( ( P  ||  P  /\  P  ||  N
)  ->  P  <_  ( P  gcd  N ) ) )
4039ex 115 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  ->  ( ( P  ||  P  /\  P  ||  N )  ->  P  <_  ( P  gcd  N
) ) ) )
41403anidm12 1329 . . . . . . 7  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  -> 
( ( P  ||  P  /\  P  ||  N
)  ->  P  <_  ( P  gcd  N ) ) ) )
421, 41sylan 283 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  ( P  =  0  /\  N  =  0 )  ->  ( ( P  ||  P  /\  P  ||  N )  ->  P  <_  ( P  gcd  N
) ) ) )
4314, 42mpd 13 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  ||  P  /\  P  ||  N )  ->  P  <_  ( P  gcd  N ) ) )
4438, 43mpand 429 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  ||  N  ->  P  <_  ( P  gcd  N
) ) )
45 prmgt1 12649 . . . . . 6  |-  ( P  e.  Prime  ->  1  < 
P )
4645adantr 276 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  1  <  P )
471zred 9565 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  RR )
4847adantr 276 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  P  e.  RR )
4918nnred 9119 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  gcd  N )  e.  RR )
50 1re 8141 . . . . . . 7  |-  1  e.  RR
51 ltletr 8232 . . . . . . 7  |-  ( ( 1  e.  RR  /\  P  e.  RR  /\  ( P  gcd  N )  e.  RR )  ->  (
( 1  <  P  /\  P  <_  ( P  gcd  N ) )  ->  1  <  ( P  gcd  N ) ) )
5250, 51mp3an1 1358 . . . . . 6  |-  ( ( P  e.  RR  /\  ( P  gcd  N )  e.  RR )  -> 
( ( 1  < 
P  /\  P  <_  ( P  gcd  N ) )  ->  1  <  ( P  gcd  N ) ) )
5348, 49, 52syl2anc 411 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( 1  <  P  /\  P  <_  ( P  gcd  N ) )  ->  1  <  ( P  gcd  N ) ) )
5446, 53mpand 429 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  <_  ( P  gcd  N )  ->  1  <  ( P  gcd  N ) ) )
55 ltne 8227 . . . . . 6  |-  ( ( 1  e.  RR  /\  1  <  ( P  gcd  N ) )  ->  ( P  gcd  N )  =/=  1 )
5650, 55mpan 424 . . . . 5  |-  ( 1  <  ( P  gcd  N )  ->  ( P  gcd  N )  =/=  1
)
5756a1i 9 . . . 4  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
1  <  ( P  gcd  N )  ->  ( P  gcd  N )  =/=  1 ) )
5844, 54, 573syld 57 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  ||  N  ->  ( P  gcd  N )  =/=  1 ) )
5958necon2bd 2458 . 2  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  (
( P  gcd  N
)  =  1  ->  -.  P  ||  N ) )
6035, 59impbid 129 1  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   RRcr 7994   0cc0 7995   1c1 7996    < clt 8177    <_ cle 8178   NNcn 9106   2c2 9157   ZZcz 9442   ZZ>=cuz 9718    || cdvds 12293    gcd cgcd 12469   Primecprime 12624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-2o 6561  df-er 6678  df-en 6886  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-gcd 12470  df-prm 12625
This theorem is referenced by:  prmrp  12662  euclemma  12663  cncongrprm  12674  isoddgcd1  12676  phiprmpw  12739  fermltl  12751  prmdiv  12752  prmdiveq  12753  vfermltl  12769  prmpwdvds  12873  perfect1  15666  perfectlem1  15667  perfectlem2  15668  lgslem1  15673  lgsprme0  15715  gausslemma2dlem0c  15724  lgseisenlem3  15745  lgsquad2lem2  15755
  Copyright terms: Public domain W3C validator