ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbxy Unicode version

Theorem nfsbxy 1935
Description: Similar to hbsb 1942 but with an extra distinct variable constraint, on  x and  y. (Contributed by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
nfsbxy.1  |-  F/ z
ph
Assertion
Ref Expression
nfsbxy  |-  F/ z [ y  /  x ] ph
Distinct variable groups:    x, y    y,
z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem nfsbxy
StepHypRef Expression
1 ax-bndl 1502 . 2  |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. x A. z ( x  =  y  ->  A. z  x  =  y )
) )
2 nfs1v 1932 . . . 4  |-  F/ z [ y  /  z ] ph
3 drsb1 1792 . . . . 5  |-  ( A. z  z  =  x  ->  ( [ y  / 
z ] ph  <->  [ y  /  x ] ph )
)
43drnf2 1727 . . . 4  |-  ( A. z  z  =  x  ->  ( F/ z [ y  /  z ]
ph 
<->  F/ z [ y  /  x ] ph ) )
52, 4mpbii 147 . . 3  |-  ( A. z  z  =  x  ->  F/ z [ y  /  x ] ph )
6 a16nf 1859 . . . 4  |-  ( A. z  z  =  y  ->  F/ z [ y  /  x ] ph )
7 df-nf 1454 . . . . . 6  |-  ( F/ z  x  =  y  <->  A. z ( x  =  y  ->  A. z  x  =  y )
)
87albii 1463 . . . . 5  |-  ( A. x F/ z  x  =  y  <->  A. x A. z
( x  =  y  ->  A. z  x  =  y ) )
9 sb5 1880 . . . . . 6  |-  ( [ y  /  x ] ph 
<->  E. x ( x  =  y  /\  ph ) )
10 nfa1 1534 . . . . . . 7  |-  F/ x A. x F/ z  x  =  y
11 sp 1504 . . . . . . . 8  |-  ( A. x F/ z  x  =  y  ->  F/ z  x  =  y )
12 nfsbxy.1 . . . . . . . . 9  |-  F/ z
ph
1312a1i 9 . . . . . . . 8  |-  ( A. x F/ z  x  =  y  ->  F/ z ph )
1411, 13nfand 1561 . . . . . . 7  |-  ( A. x F/ z  x  =  y  ->  F/ z
( x  =  y  /\  ph ) )
1510, 14nfexd 1754 . . . . . 6  |-  ( A. x F/ z  x  =  y  ->  F/ z E. x ( x  =  y  /\  ph )
)
169, 15nfxfrd 1468 . . . . 5  |-  ( A. x F/ z  x  =  y  ->  F/ z [ y  /  x ] ph )
178, 16sylbir 134 . . . 4  |-  ( A. x A. z ( x  =  y  ->  A. z  x  =  y )  ->  F/ z [ y  /  x ] ph )
186, 17jaoi 711 . . 3  |-  ( ( A. z  z  =  y  \/  A. x A. z ( x  =  y  ->  A. z  x  =  y )
)  ->  F/ z [ y  /  x ] ph )
195, 18jaoi 711 . 2  |-  ( ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. x A. z
( x  =  y  ->  A. z  x  =  y ) ) )  ->  F/ z [ y  /  x ] ph )
201, 19ax-mp 5 1  |-  F/ z [ y  /  x ] ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703   A.wal 1346   F/wnf 1453   E.wex 1485   [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by:  nfsb  1939  sbalyz  1992  opelopabsb  4245  bezoutlemmain  11953
  Copyright terms: Public domain W3C validator