ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbxy Unicode version

Theorem nfsbxy 1958
Description: Similar to hbsb 1965 but with an extra distinct variable constraint, on  x and  y. (Contributed by Jim Kingdon, 19-Mar-2018.)
Hypothesis
Ref Expression
nfsbxy.1  |-  F/ z
ph
Assertion
Ref Expression
nfsbxy  |-  F/ z [ y  /  x ] ph
Distinct variable groups:    x, y    y,
z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem nfsbxy
StepHypRef Expression
1 ax-bndl 1520 . 2  |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. x A. z ( x  =  y  ->  A. z  x  =  y )
) )
2 nfs1v 1955 . . . 4  |-  F/ z [ y  /  z ] ph
3 drsb1 1810 . . . . 5  |-  ( A. z  z  =  x  ->  ( [ y  / 
z ] ph  <->  [ y  /  x ] ph )
)
43drnf2 1745 . . . 4  |-  ( A. z  z  =  x  ->  ( F/ z [ y  /  z ]
ph 
<->  F/ z [ y  /  x ] ph ) )
52, 4mpbii 148 . . 3  |-  ( A. z  z  =  x  ->  F/ z [ y  /  x ] ph )
6 a16nf 1877 . . . 4  |-  ( A. z  z  =  y  ->  F/ z [ y  /  x ] ph )
7 df-nf 1472 . . . . . 6  |-  ( F/ z  x  =  y  <->  A. z ( x  =  y  ->  A. z  x  =  y )
)
87albii 1481 . . . . 5  |-  ( A. x F/ z  x  =  y  <->  A. x A. z
( x  =  y  ->  A. z  x  =  y ) )
9 sb5 1899 . . . . . 6  |-  ( [ y  /  x ] ph 
<->  E. x ( x  =  y  /\  ph ) )
10 nfa1 1552 . . . . . . 7  |-  F/ x A. x F/ z  x  =  y
11 sp 1522 . . . . . . . 8  |-  ( A. x F/ z  x  =  y  ->  F/ z  x  =  y )
12 nfsbxy.1 . . . . . . . . 9  |-  F/ z
ph
1312a1i 9 . . . . . . . 8  |-  ( A. x F/ z  x  =  y  ->  F/ z ph )
1411, 13nfand 1579 . . . . . . 7  |-  ( A. x F/ z  x  =  y  ->  F/ z
( x  =  y  /\  ph ) )
1510, 14nfexd 1772 . . . . . 6  |-  ( A. x F/ z  x  =  y  ->  F/ z E. x ( x  =  y  /\  ph )
)
169, 15nfxfrd 1486 . . . . 5  |-  ( A. x F/ z  x  =  y  ->  F/ z [ y  /  x ] ph )
178, 16sylbir 135 . . . 4  |-  ( A. x A. z ( x  =  y  ->  A. z  x  =  y )  ->  F/ z [ y  /  x ] ph )
186, 17jaoi 717 . . 3  |-  ( ( A. z  z  =  y  \/  A. x A. z ( x  =  y  ->  A. z  x  =  y )
)  ->  F/ z [ y  /  x ] ph )
195, 18jaoi 717 . 2  |-  ( ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. x A. z
( x  =  y  ->  A. z  x  =  y ) ) )  ->  F/ z [ y  /  x ] ph )
201, 19ax-mp 5 1  |-  F/ z [ y  /  x ] ph
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709   A.wal 1362   F/wnf 1471   E.wex 1503   [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774
This theorem is referenced by:  nfsb  1962  sbalyz  2015  opelopabsb  4290  bezoutlemmain  12135
  Copyright terms: Public domain W3C validator