ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abid2f Unicode version

Theorem abid2f 2247
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypothesis
Ref Expression
abid2f.1  |-  F/_ x A
Assertion
Ref Expression
abid2f  |-  { x  |  x  e.  A }  =  A

Proof of Theorem abid2f
StepHypRef Expression
1 abid2f.1 . . . . 5  |-  F/_ x A
2 nfab1 2225 . . . . 5  |-  F/_ x { x  |  x  e.  A }
31, 2cleqf 2246 . . . 4  |-  ( A  =  { x  |  x  e.  A }  <->  A. x ( x  e.  A  <->  x  e.  { x  |  x  e.  A } ) )
4 abid 2071 . . . . . 6  |-  ( x  e.  { x  |  x  e.  A }  <->  x  e.  A )
54bibi2i 225 . . . . 5  |-  ( ( x  e.  A  <->  x  e.  { x  |  x  e.  A } )  <->  ( x  e.  A  <->  x  e.  A
) )
65albii 1400 . . . 4  |-  ( A. x ( x  e.  A  <->  x  e.  { x  |  x  e.  A } )  <->  A. x
( x  e.  A  <->  x  e.  A ) )
73, 6bitri 182 . . 3  |-  ( A  =  { x  |  x  e.  A }  <->  A. x ( x  e.  A  <->  x  e.  A
) )
8 biid 169 . . 3  |-  ( x  e.  A  <->  x  e.  A )
97, 8mpgbir 1383 . 2  |-  A  =  { x  |  x  e.  A }
109eqcomi 2087 1  |-  { x  |  x  e.  A }  =  A
Colors of variables: wff set class
Syntax hints:    <-> wb 103   A.wal 1283    = wceq 1285    e. wcel 1434   {cab 2069   F/_wnfc 2210
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator