ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abid2f Unicode version

Theorem abid2f 2365
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypothesis
Ref Expression
abid2f.1  |-  F/_ x A
Assertion
Ref Expression
abid2f  |-  { x  |  x  e.  A }  =  A

Proof of Theorem abid2f
StepHypRef Expression
1 abid2f.1 . . . . 5  |-  F/_ x A
2 nfab1 2341 . . . . 5  |-  F/_ x { x  |  x  e.  A }
31, 2cleqf 2364 . . . 4  |-  ( A  =  { x  |  x  e.  A }  <->  A. x ( x  e.  A  <->  x  e.  { x  |  x  e.  A } ) )
4 abid 2184 . . . . . 6  |-  ( x  e.  { x  |  x  e.  A }  <->  x  e.  A )
54bibi2i 227 . . . . 5  |-  ( ( x  e.  A  <->  x  e.  { x  |  x  e.  A } )  <->  ( x  e.  A  <->  x  e.  A
) )
65albii 1484 . . . 4  |-  ( A. x ( x  e.  A  <->  x  e.  { x  |  x  e.  A } )  <->  A. x
( x  e.  A  <->  x  e.  A ) )
73, 6bitri 184 . . 3  |-  ( A  =  { x  |  x  e.  A }  <->  A. x ( x  e.  A  <->  x  e.  A
) )
8 biid 171 . . 3  |-  ( x  e.  A  <->  x  e.  A )
97, 8mpgbir 1467 . 2  |-  A  =  { x  |  x  e.  A }
109eqcomi 2200 1  |-  { x  |  x  e.  A }  =  A
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2167   {cab 2182   F/_wnfc 2326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator