Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abid2f | Unicode version |
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
abid2f.1 |
Ref | Expression |
---|---|
abid2f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid2f.1 | . . . . 5 | |
2 | nfab1 2319 | . . . . 5 | |
3 | 1, 2 | cleqf 2342 | . . . 4 |
4 | abid 2163 | . . . . . 6 | |
5 | 4 | bibi2i 227 | . . . . 5 |
6 | 5 | albii 1468 | . . . 4 |
7 | 3, 6 | bitri 184 | . . 3 |
8 | biid 171 | . . 3 | |
9 | 7, 8 | mpgbir 1451 | . 2 |
10 | 9 | eqcomi 2179 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wal 1351 wceq 1353 wcel 2146 cab 2161 wnfc 2304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |