ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abid2f Unicode version

Theorem abid2f 2343
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypothesis
Ref Expression
abid2f.1  |-  F/_ x A
Assertion
Ref Expression
abid2f  |-  { x  |  x  e.  A }  =  A

Proof of Theorem abid2f
StepHypRef Expression
1 abid2f.1 . . . . 5  |-  F/_ x A
2 nfab1 2319 . . . . 5  |-  F/_ x { x  |  x  e.  A }
31, 2cleqf 2342 . . . 4  |-  ( A  =  { x  |  x  e.  A }  <->  A. x ( x  e.  A  <->  x  e.  { x  |  x  e.  A } ) )
4 abid 2163 . . . . . 6  |-  ( x  e.  { x  |  x  e.  A }  <->  x  e.  A )
54bibi2i 227 . . . . 5  |-  ( ( x  e.  A  <->  x  e.  { x  |  x  e.  A } )  <->  ( x  e.  A  <->  x  e.  A
) )
65albii 1468 . . . 4  |-  ( A. x ( x  e.  A  <->  x  e.  { x  |  x  e.  A } )  <->  A. x
( x  e.  A  <->  x  e.  A ) )
73, 6bitri 184 . . 3  |-  ( A  =  { x  |  x  e.  A }  <->  A. x ( x  e.  A  <->  x  e.  A
) )
8 biid 171 . . 3  |-  ( x  e.  A  <->  x  e.  A )
97, 8mpgbir 1451 . 2  |-  A  =  { x  |  x  e.  A }
109eqcomi 2179 1  |-  { x  |  x  e.  A }  =  A
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wal 1351    = wceq 1353    e. wcel 2146   {cab 2161   F/_wnfc 2304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator