| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abid2f | GIF version | ||
| Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| abid2f.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| abid2f | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfab1 2351 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 3 | 1, 2 | cleqf 2374 | . . . 4 ⊢ (𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝑥 ∈ 𝐴})) |
| 4 | abid 2194 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ 𝑥 ∈ 𝐴) | |
| 5 | 4 | bibi2i 227 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝑥 ∈ 𝐴}) ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
| 6 | 5 | albii 1494 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝑥 ∈ 𝐴}) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
| 7 | 3, 6 | bitri 184 | . . 3 ⊢ (𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
| 8 | biid 171 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) | |
| 9 | 7, 8 | mpgbir 1477 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 10 | 9 | eqcomi 2210 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1371 = wceq 1373 ∈ wcel 2177 {cab 2192 Ⅎwnfc 2336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |