![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abid2f | GIF version |
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
abid2f.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
abid2f | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
2 | nfab1 2321 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∣ 𝑥 ∈ 𝐴} | |
3 | 1, 2 | cleqf 2344 | . . . 4 ⊢ (𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝑥 ∈ 𝐴})) |
4 | abid 2165 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ 𝑥 ∈ 𝐴) | |
5 | 4 | bibi2i 227 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝑥 ∈ 𝐴}) ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
6 | 5 | albii 1470 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝑥 ∈ 𝐴}) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
7 | 3, 6 | bitri 184 | . . 3 ⊢ (𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
8 | biid 171 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) | |
9 | 7, 8 | mpgbir 1453 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} |
10 | 9 | eqcomi 2181 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1351 = wceq 1353 ∈ wcel 2148 {cab 2163 Ⅎwnfc 2306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |