Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abid2f | GIF version |
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
abid2f.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
abid2f | ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
2 | nfab1 2310 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∣ 𝑥 ∈ 𝐴} | |
3 | 1, 2 | cleqf 2333 | . . . 4 ⊢ (𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝑥 ∈ 𝐴})) |
4 | abid 2153 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ 𝑥 ∈ 𝐴) | |
5 | 4 | bibi2i 226 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝑥 ∈ 𝐴}) ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
6 | 5 | albii 1458 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝑥 ∈ 𝐴}) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
7 | 3, 6 | bitri 183 | . . 3 ⊢ (𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
8 | biid 170 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) | |
9 | 7, 8 | mpgbir 1441 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} |
10 | 9 | eqcomi 2169 | 1 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1341 = wceq 1343 ∈ wcel 2136 {cab 2151 Ⅎwnfc 2295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |