ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abid2f GIF version

Theorem abid2f 2398
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypothesis
Ref Expression
abid2f.1 𝑥𝐴
Assertion
Ref Expression
abid2f {𝑥𝑥𝐴} = 𝐴

Proof of Theorem abid2f
StepHypRef Expression
1 abid2f.1 . . . . 5 𝑥𝐴
2 nfab1 2374 . . . . 5 𝑥{𝑥𝑥𝐴}
31, 2cleqf 2397 . . . 4 (𝐴 = {𝑥𝑥𝐴} ↔ ∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝑥𝐴}))
4 abid 2217 . . . . . 6 (𝑥 ∈ {𝑥𝑥𝐴} ↔ 𝑥𝐴)
54bibi2i 227 . . . . 5 ((𝑥𝐴𝑥 ∈ {𝑥𝑥𝐴}) ↔ (𝑥𝐴𝑥𝐴))
65albii 1516 . . . 4 (∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝑥𝐴}) ↔ ∀𝑥(𝑥𝐴𝑥𝐴))
73, 6bitri 184 . . 3 (𝐴 = {𝑥𝑥𝐴} ↔ ∀𝑥(𝑥𝐴𝑥𝐴))
8 biid 171 . . 3 (𝑥𝐴𝑥𝐴)
97, 8mpgbir 1499 . 2 𝐴 = {𝑥𝑥𝐴}
109eqcomi 2233 1 {𝑥𝑥𝐴} = 𝐴
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1393   = wceq 1395  wcel 2200  {cab 2215  wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator