| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abn0m | Unicode version | ||
| Description: Inhabited class abstraction. (Contributed by Jim Kingdon, 8-Jul-2022.) |
| Ref | Expression |
|---|---|
| abn0m |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 |
. . 3
| |
| 2 | nfsab1 2195 |
. . 3
| |
| 3 | eleq1w 2266 |
. . 3
| |
| 4 | 1, 2, 3 | cbvex 1779 |
. 2
|
| 5 | abid 2193 |
. . 3
| |
| 6 | 5 | exbii 1628 |
. 2
|
| 7 | 4, 6 | bitr3i 186 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-clel 2201 |
| This theorem is referenced by: mapprc 6741 acnrcl 7315 |
| Copyright terms: Public domain | W3C validator |