ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abn0m Unicode version

Theorem abn0m 3449
Description: Inhabited class abstraction. (Contributed by Jim Kingdon, 8-Jul-2022.)
Assertion
Ref Expression
abn0m  |-  ( E. y  y  e.  {
x  |  ph }  <->  E. x ph )
Distinct variable groups:    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem abn0m
StepHypRef Expression
1 nfv 1528 . . 3  |-  F/ y  x  e.  { x  |  ph }
2 nfsab1 2167 . . 3  |-  F/ x  y  e.  { x  |  ph }
3 eleq1w 2238 . . 3  |-  ( x  =  y  ->  (
x  e.  { x  |  ph }  <->  y  e.  { x  |  ph }
) )
41, 2, 3cbvex 1756 . 2  |-  ( E. x  x  e.  {
x  |  ph }  <->  E. y  y  e.  {
x  |  ph }
)
5 abid 2165 . . 3  |-  ( x  e.  { x  | 
ph }  <->  ph )
65exbii 1605 . 2  |-  ( E. x  x  e.  {
x  |  ph }  <->  E. x ph )
74, 6bitr3i 186 1  |-  ( E. y  y  e.  {
x  |  ph }  <->  E. x ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1492    e. wcel 2148   {cab 2163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-clel 2173
This theorem is referenced by:  mapprc  6652
  Copyright terms: Public domain W3C validator