Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abn0m | Unicode version |
Description: Inhabited class abstraction. (Contributed by Jim Kingdon, 8-Jul-2022.) |
Ref | Expression |
---|---|
abn0m |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . . 3 | |
2 | nfsab1 2155 | . . 3 | |
3 | eleq1w 2227 | . . 3 | |
4 | 1, 2, 3 | cbvex 1744 | . 2 |
5 | abid 2153 | . . 3 | |
6 | 5 | exbii 1593 | . 2 |
7 | 4, 6 | bitr3i 185 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wex 1480 wcel 2136 cab 2151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-clel 2161 |
This theorem is referenced by: mapprc 6618 |
Copyright terms: Public domain | W3C validator |