| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abn0m | Unicode version | ||
| Description: Inhabited class abstraction. (Contributed by Jim Kingdon, 8-Jul-2022.) |
| Ref | Expression |
|---|---|
| abn0m |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. . 3
| |
| 2 | nfsab1 2186 |
. . 3
| |
| 3 | eleq1w 2257 |
. . 3
| |
| 4 | 1, 2, 3 | cbvex 1770 |
. 2
|
| 5 | abid 2184 |
. . 3
| |
| 6 | 5 | exbii 1619 |
. 2
|
| 7 | 4, 6 | bitr3i 186 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-clel 2192 |
| This theorem is referenced by: mapprc 6720 acnrcl 7284 |
| Copyright terms: Public domain | W3C validator |