| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > abn0m | Unicode version | ||
| Description: Inhabited class abstraction. (Contributed by Jim Kingdon, 8-Jul-2022.) | 
| Ref | Expression | 
|---|---|
| abn0m | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | 
. . 3
 | |
| 2 | nfsab1 2186 | 
. . 3
 | |
| 3 | eleq1w 2257 | 
. . 3
 | |
| 4 | 1, 2, 3 | cbvex 1770 | 
. 2
 | 
| 5 | abid 2184 | 
. . 3
 | |
| 6 | 5 | exbii 1619 | 
. 2
 | 
| 7 | 4, 6 | bitr3i 186 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-clel 2192 | 
| This theorem is referenced by: mapprc 6711 | 
| Copyright terms: Public domain | W3C validator |