Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapprc | Unicode version |
Description: When is a proper class, the class of all functions mapping to is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.) |
Ref | Expression |
---|---|
mapprc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abn0m 3434 | . . . 4 | |
2 | fdm 5343 | . . . . . 6 | |
3 | vex 2729 | . . . . . . 7 | |
4 | 3 | dmex 4870 | . . . . . 6 |
5 | 2, 4 | eqeltrrdi 2258 | . . . . 5 |
6 | 5 | exlimiv 1586 | . . . 4 |
7 | 1, 6 | sylbi 120 | . . 3 |
8 | 7 | con3i 622 | . 2 |
9 | notm0 3429 | . 2 | |
10 | 8, 9 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1343 wex 1480 wcel 2136 cab 2151 cvv 2726 c0 3409 cdm 4604 wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-cnv 4612 df-dm 4614 df-rn 4615 df-fn 5191 df-f 5192 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |