ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapprc Unicode version

Theorem mapprc 6741
Description: When  A is a proper class, the class of all functions mapping  A to  B is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
mapprc  |-  ( -.  A  e.  _V  ->  { f  |  f : A --> B }  =  (/) )
Distinct variable groups:    A, f    B, f

Proof of Theorem mapprc
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 abn0m 3486 . . . 4  |-  ( E. g  g  e.  {
f  |  f : A --> B }  <->  E. f 
f : A --> B )
2 fdm 5433 . . . . . 6  |-  ( f : A --> B  ->  dom  f  =  A
)
3 vex 2775 . . . . . . 7  |-  f  e. 
_V
43dmex 4946 . . . . . 6  |-  dom  f  e.  _V
52, 4eqeltrrdi 2297 . . . . 5  |-  ( f : A --> B  ->  A  e.  _V )
65exlimiv 1621 . . . 4  |-  ( E. f  f : A --> B  ->  A  e.  _V )
71, 6sylbi 121 . . 3  |-  ( E. g  g  e.  {
f  |  f : A --> B }  ->  A  e.  _V )
87con3i 633 . 2  |-  ( -.  A  e.  _V  ->  -. 
E. g  g  e. 
{ f  |  f : A --> B }
)
9 notm0 3481 . 2  |-  ( -. 
E. g  g  e. 
{ f  |  f : A --> B }  <->  { f  |  f : A --> B }  =  (/) )
108, 9sylib 122 1  |-  ( -.  A  e.  _V  ->  { f  |  f : A --> B }  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1373   E.wex 1515    e. wcel 2176   {cab 2191   _Vcvv 2772   (/)c0 3460   dom cdm 4676   -->wf 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-cnv 4684  df-dm 4686  df-rn 4687  df-fn 5275  df-f 5276
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator