Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapprc | Unicode version |
Description: When is a proper class, the class of all functions mapping to is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.) |
Ref | Expression |
---|---|
mapprc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abn0m 3446 | . . . 4 | |
2 | fdm 5363 | . . . . . 6 | |
3 | vex 2738 | . . . . . . 7 | |
4 | 3 | dmex 4886 | . . . . . 6 |
5 | 2, 4 | eqeltrrdi 2267 | . . . . 5 |
6 | 5 | exlimiv 1596 | . . . 4 |
7 | 1, 6 | sylbi 121 | . . 3 |
8 | 7 | con3i 632 | . 2 |
9 | notm0 3441 | . 2 | |
10 | 8, 9 | sylib 122 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1353 wex 1490 wcel 2146 cab 2161 cvv 2735 c0 3420 cdm 4620 wf 5204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-cnv 4628 df-dm 4630 df-rn 4631 df-fn 5211 df-f 5212 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |