ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapprc Unicode version

Theorem mapprc 6618
Description: When  A is a proper class, the class of all functions mapping  A to  B is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
mapprc  |-  ( -.  A  e.  _V  ->  { f  |  f : A --> B }  =  (/) )
Distinct variable groups:    A, f    B, f

Proof of Theorem mapprc
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 abn0m 3434 . . . 4  |-  ( E. g  g  e.  {
f  |  f : A --> B }  <->  E. f 
f : A --> B )
2 fdm 5343 . . . . . 6  |-  ( f : A --> B  ->  dom  f  =  A
)
3 vex 2729 . . . . . . 7  |-  f  e. 
_V
43dmex 4870 . . . . . 6  |-  dom  f  e.  _V
52, 4eqeltrrdi 2258 . . . . 5  |-  ( f : A --> B  ->  A  e.  _V )
65exlimiv 1586 . . . 4  |-  ( E. f  f : A --> B  ->  A  e.  _V )
71, 6sylbi 120 . . 3  |-  ( E. g  g  e.  {
f  |  f : A --> B }  ->  A  e.  _V )
87con3i 622 . 2  |-  ( -.  A  e.  _V  ->  -. 
E. g  g  e. 
{ f  |  f : A --> B }
)
9 notm0 3429 . 2  |-  ( -. 
E. g  g  e. 
{ f  |  f : A --> B }  <->  { f  |  f : A --> B }  =  (/) )
108, 9sylib 121 1  |-  ( -.  A  e.  _V  ->  { f  |  f : A --> B }  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1343   E.wex 1480    e. wcel 2136   {cab 2151   _Vcvv 2726   (/)c0 3409   dom cdm 4604   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-cnv 4612  df-dm 4614  df-rn 4615  df-fn 5191  df-f 5192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator