ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapprc Unicode version

Theorem mapprc 6654
Description: When  A is a proper class, the class of all functions mapping  A to  B is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
mapprc  |-  ( -.  A  e.  _V  ->  { f  |  f : A --> B }  =  (/) )
Distinct variable groups:    A, f    B, f

Proof of Theorem mapprc
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 abn0m 3450 . . . 4  |-  ( E. g  g  e.  {
f  |  f : A --> B }  <->  E. f 
f : A --> B )
2 fdm 5373 . . . . . 6  |-  ( f : A --> B  ->  dom  f  =  A
)
3 vex 2742 . . . . . . 7  |-  f  e. 
_V
43dmex 4895 . . . . . 6  |-  dom  f  e.  _V
52, 4eqeltrrdi 2269 . . . . 5  |-  ( f : A --> B  ->  A  e.  _V )
65exlimiv 1598 . . . 4  |-  ( E. f  f : A --> B  ->  A  e.  _V )
71, 6sylbi 121 . . 3  |-  ( E. g  g  e.  {
f  |  f : A --> B }  ->  A  e.  _V )
87con3i 632 . 2  |-  ( -.  A  e.  _V  ->  -. 
E. g  g  e. 
{ f  |  f : A --> B }
)
9 notm0 3445 . 2  |-  ( -. 
E. g  g  e. 
{ f  |  f : A --> B }  <->  { f  |  f : A --> B }  =  (/) )
108, 9sylib 122 1  |-  ( -.  A  e.  _V  ->  { f  |  f : A --> B }  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1353   E.wex 1492    e. wcel 2148   {cab 2163   _Vcvv 2739   (/)c0 3424   dom cdm 4628   -->wf 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-cnv 4636  df-dm 4638  df-rn 4639  df-fn 5221  df-f 5222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator