ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abn0r Unicode version

Theorem abn0r 3493
Description: Nonempty class abstraction. (Contributed by Jim Kingdon, 1-Aug-2018.)
Assertion
Ref Expression
abn0r  |-  ( E. x ph  ->  { x  |  ph }  =/=  (/) )

Proof of Theorem abn0r
StepHypRef Expression
1 abid 2195 . . 3  |-  ( x  e.  { x  | 
ph }  <->  ph )
21exbii 1629 . 2  |-  ( E. x  x  e.  {
x  |  ph }  <->  E. x ph )
3 nfab1 2352 . . 3  |-  F/_ x { x  |  ph }
43n0rf 3481 . 2  |-  ( E. x  x  e.  {
x  |  ph }  ->  { x  |  ph }  =/=  (/) )
52, 4sylbir 135 1  |-  ( E. x ph  ->  { x  |  ph }  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1516    e. wcel 2178   {cab 2193    =/= wne 2378   (/)c0 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-v 2778  df-dif 3176  df-nul 3469
This theorem is referenced by:  rabn0r  3495
  Copyright terms: Public domain W3C validator