![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abn0m | GIF version |
Description: Inhabited class abstraction. (Contributed by Jim Kingdon, 8-Jul-2022.) |
Ref | Expression |
---|---|
abn0m | ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 | . . 3 ⊢ Ⅎ𝑦 𝑥 ∈ {𝑥 ∣ 𝜑} | |
2 | nfsab1 2167 | . . 3 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
3 | eleq1w 2238 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
4 | 1, 2, 3 | cbvex 1756 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦 𝑦 ∈ {𝑥 ∣ 𝜑}) |
5 | abid 2165 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
6 | 5 | exbii 1605 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥𝜑) |
7 | 4, 6 | bitr3i 186 | 1 ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1492 ∈ wcel 2148 {cab 2163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-clel 2173 |
This theorem is referenced by: mapprc 6654 |
Copyright terms: Public domain | W3C validator |