ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abn0m GIF version

Theorem abn0m 3476
Description: Inhabited class abstraction. (Contributed by Jim Kingdon, 8-Jul-2022.)
Assertion
Ref Expression
abn0m (∃𝑦 𝑦 ∈ {𝑥𝜑} ↔ ∃𝑥𝜑)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem abn0m
StepHypRef Expression
1 nfv 1542 . . 3 𝑦 𝑥 ∈ {𝑥𝜑}
2 nfsab1 2186 . . 3 𝑥 𝑦 ∈ {𝑥𝜑}
3 eleq1w 2257 . . 3 (𝑥 = 𝑦 → (𝑥 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜑}))
41, 2, 3cbvex 1770 . 2 (∃𝑥 𝑥 ∈ {𝑥𝜑} ↔ ∃𝑦 𝑦 ∈ {𝑥𝜑})
5 abid 2184 . . 3 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
65exbii 1619 . 2 (∃𝑥 𝑥 ∈ {𝑥𝜑} ↔ ∃𝑥𝜑)
74, 6bitr3i 186 1 (∃𝑦 𝑦 ∈ {𝑥𝜑} ↔ ∃𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  wex 1506  wcel 2167  {cab 2182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-clel 2192
This theorem is referenced by:  mapprc  6711
  Copyright terms: Public domain W3C validator