| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abn0m | GIF version | ||
| Description: Inhabited class abstraction. (Contributed by Jim Kingdon, 8-Jul-2022.) |
| Ref | Expression |
|---|---|
| abn0m | ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 | . . 3 ⊢ Ⅎ𝑦 𝑥 ∈ {𝑥 ∣ 𝜑} | |
| 2 | nfsab1 2195 | . . 3 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | |
| 3 | eleq1w 2266 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
| 4 | 1, 2, 3 | cbvex 1779 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑦 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 5 | abid 2193 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
| 6 | 5 | exbii 1628 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥𝜑) |
| 7 | 4, 6 | bitr3i 186 | 1 ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ ∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1515 ∈ wcel 2176 {cab 2191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-clel 2201 |
| This theorem is referenced by: mapprc 6739 acnrcl 7313 |
| Copyright terms: Public domain | W3C validator |