ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodmodclem2 Unicode version

Theorem prodmodclem2 12088
Description: Lemma for prodmodc 12089. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 13-Apr-2024.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodmodc.3  |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )
Assertion
Ref Expression
prodmodclem2  |-  ( (
ph  /\  E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  ->  x  =  z )
)
Distinct variable groups:    A, f, j, k, m    B, j   
f, F, k, m   
j, G    ph, f, k, m    x, f, k, m    z, f, m
Allowed substitution hints:    ph( x, y, z, j, n)    A( x, y, z, n)    B( x, y, z, f, k, m, n)    F( x, y, z, j, n)    G( x, y, z, f, k, m, n)

Proof of Theorem prodmodclem2
Dummy variables  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . 4  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  A  C_  ( ZZ>=
`  m ) )
2 simplr 528 . . . 4  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
3 simprr 531 . . . 4  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  seq m
(  x.  ,  F
)  ~~>  x )
41, 2, 33jca 1201 . . 3  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x ) )
54reximi 2627 . 2  |-  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x ) )
6 fveq2 5627 . . . . . 6  |-  ( m  =  w  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  w )
)
76sseq2d 3254 . . . . 5  |-  ( m  =  w  ->  ( A  C_  ( ZZ>= `  m
)  <->  A  C_  ( ZZ>= `  w ) ) )
86raleqdv 2734 . . . . 5  |-  ( m  =  w  ->  ( A. j  e.  ( ZZ>=
`  m )DECID  j  e.  A  <->  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A ) )
9 seqeq1 10672 . . . . . 6  |-  ( m  =  w  ->  seq m (  x.  ,  F )  =  seq w (  x.  ,  F ) )
109breq1d 4093 . . . . 5  |-  ( m  =  w  ->  (  seq m (  x.  ,  F )  ~~>  x  <->  seq w
(  x.  ,  F
)  ~~>  x ) )
117, 8, 103anbi123d 1346 . . . 4  |-  ( m  =  w  ->  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  x.  ,  F )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x ) ) )
1211cbvrexvw 2770 . . 3  |-  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  <->  E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x ) )
13 reeanv 2701 . . . . 5  |-  ( E. w  e.  ZZ  E. m  e.  NN  (
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  <->  ( E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) ) )
14 simprl3 1068 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  seq w (  x.  ,  F )  ~~>  x )
15 simprl1 1066 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  C_  ( ZZ>= `  w
) )
16 uzssz 9742 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  w )  C_  ZZ
1715, 16sstrdi 3236 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  C_  ZZ )
18 1zzd 9473 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
1  e.  ZZ )
19 simplrr 536 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  m  e.  NN )
2019nnzd 9568 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  m  e.  ZZ )
2118, 20fzfigd 10653 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( 1 ... m
)  e.  Fin )
22 simprr 531 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
f : ( 1 ... m ) -1-1-onto-> A )
23 f1oeng 6908 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1 ... m
)  e.  Fin  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
1 ... m )  ~~  A )
2421, 22, 23syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( 1 ... m
)  ~~  A )
2524ensymd 6935 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  ~~  ( 1 ... m ) )
26 enfii 7036 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... m
)  e.  Fin  /\  A  ~~  ( 1 ... m ) )  ->  A  e.  Fin )
2721, 25, 26syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  e.  Fin )
28 zfz1iso 11063 . . . . . . . . . . . . . 14  |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. g 
g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
2917, 27, 28syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  E. g  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) )
30 prodmo.1 . . . . . . . . . . . . . . . 16  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
31 prodmo.2 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
3231ad4ant14 514 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( w  e.  ZZ  /\  m  e.  NN ) )  /\  ( ( ( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  /\  k  e.  A )  ->  B  e.  CC )
33 prodmodc.3 . . . . . . . . . . . . . . . 16  |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )
34 eqid 2229 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  [_ (
g `  j )  /  k ]_ B ,  1 ) )  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) )
35 simpll2 1061 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) )  ->  A. j  e.  ( ZZ>=
`  w )DECID  j  e.  A )
3635adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  ->  A. j  e.  ( ZZ>=
`  w )DECID  j  e.  A )
37 eleq1w 2290 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
3837dcbid 843 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  k  ->  (DECID  j  e.  A  <-> DECID  k  e.  A )
)
3938rspcv 2903 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ZZ>= `  w
)  ->  ( A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  -> DECID  k  e.  A ) )
4036, 39mpan9 281 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( w  e.  ZZ  /\  m  e.  NN ) )  /\  ( ( ( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  /\  k  e.  ( ZZ>= `  w ) )  -> DECID  k  e.  A )
41 simplrr 536 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  ->  m  e.  NN )
42 simplrl 535 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  ->  w  e.  ZZ )
4315adantrr 479 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  ->  A  C_  ( ZZ>= `  w
) )
44 simprlr 538 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  -> 
f : ( 1 ... m ) -1-1-onto-> A )
45 simprr 531 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  -> 
g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
4630, 32, 33, 34, 40, 41, 42, 43, 44, 45prodmodclem2a 12087 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  ->  seq w (  x.  ,  F )  ~~>  (  seq 1 (  x.  ,  G ) `  m
) )
4746expr 375 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
)  ->  seq w
(  x.  ,  F
)  ~~>  (  seq 1
(  x.  ,  G
) `  m )
) )
4847exlimdv 1865 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( E. g  g 
Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A )  ->  seq w (  x.  ,  F )  ~~>  (  seq 1 (  x.  ,  G ) `  m
) ) )
4929, 48mpd 13 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  seq w (  x.  ,  F )  ~~>  (  seq 1 (  x.  ,  G ) `  m
) )
50 climuni 11804 . . . . . . . . . . . 12  |-  ( (  seq w (  x.  ,  F )  ~~>  x  /\  seq w (  x.  ,  F )  ~~>  (  seq 1 (  x.  ,  G ) `  m
) )  ->  x  =  (  seq 1
(  x.  ,  G
) `  m )
)
5114, 49, 50syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  x  =  (  seq 1 (  x.  ,  G ) `  m
) )
52 eqeq2 2239 . . . . . . . . . . 11  |-  ( z  =  (  seq 1
(  x.  ,  G
) `  m )  ->  ( x  =  z  <-> 
x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )
5351, 52syl5ibrcom 157 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( z  =  (  seq 1 (  x.  ,  G ) `  m )  ->  x  =  z ) )
5453expr 375 . . . . . . . . 9  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x ) )  ->  ( f : ( 1 ... m
)
-1-1-onto-> A  ->  ( z  =  (  seq 1 (  x.  ,  G ) `
 m )  ->  x  =  z )
) )
5554impd 254 . . . . . . . 8  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x ) )  ->  ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `
 m ) )  ->  x  =  z ) )
5655exlimdv 1865 . . . . . . 7  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x ) )  ->  ( E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  ->  x  =  z )
)
5756expimpd 363 . . . . . 6  |-  ( (
ph  /\  ( w  e.  ZZ  /\  m  e.  NN ) )  -> 
( ( ( A 
C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) )  ->  x  =  z ) )
5857rexlimdvva 2656 . . . . 5  |-  ( ph  ->  ( E. w  e.  ZZ  E. m  e.  NN  ( ( A 
C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) )  ->  x  =  z ) )
5913, 58biimtrrid 153 . . . 4  |-  ( ph  ->  ( ( E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) )  ->  x  =  z ) )
6059expdimp 259 . . 3  |-  ( (
ph  /\  E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) )  ->  x  =  z ) )
6112, 60sylan2b 287 . 2  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) )  ->  x  =  z ) )
625, 61sylan2 286 1  |-  ( (
ph  /\  E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  ->  x  =  z )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 839    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509   [_csb 3124    C_ wss 3197   ifcif 3602   class class class wbr 4083    |-> cmpt 4145   -1-1-onto->wf1o 5317   ` cfv 5318    Isom wiso 5319  (class class class)co 6001    ~~ cen 6885   Fincfn 6887   CCcc 7997   0cc0 7999   1c1 8000    x. cmul 8004    < clt 8181    <_ cle 8182   # cap 8728   NNcn 9110   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204    seqcseq 10669  ♯chash 10997    ~~> cli 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790
This theorem is referenced by:  prodmodc  12089
  Copyright terms: Public domain W3C validator