ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodmodclem2 Unicode version

Theorem prodmodclem2 11351
Description: Lemma for prodmodc 11352. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 13-Apr-2024.)
Hypotheses
Ref Expression
prodmo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
prodmo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
prodmodc.3  |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )
Assertion
Ref Expression
prodmodclem2  |-  ( (
ph  /\  E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  ->  x  =  z )
)
Distinct variable groups:    A, f, j, k, m    B, j   
f, F, k, m   
j, G    ph, f, k, m    x, f, k, m    z, f, m
Allowed substitution hints:    ph( x, y, z, j, n)    A( x, y, z, n)    B( x, y, z, f, k, m, n)    F( x, y, z, j, n)    G( x, y, z, f, k, m, n)

Proof of Theorem prodmodclem2
Dummy variables  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 518 . . . 4  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  A  C_  ( ZZ>=
`  m ) )
2 simplr 519 . . . 4  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
3 simprr 521 . . . 4  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  seq m
(  x.  ,  F
)  ~~>  x )
41, 2, 33jca 1161 . . 3  |-  ( ( ( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x ) )
54reximi 2529 . 2  |-  ( E. m  e.  ZZ  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) )  ->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x ) )
6 fveq2 5421 . . . . . 6  |-  ( m  =  w  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  w )
)
76sseq2d 3127 . . . . 5  |-  ( m  =  w  ->  ( A  C_  ( ZZ>= `  m
)  <->  A  C_  ( ZZ>= `  w ) ) )
86raleqdv 2632 . . . . 5  |-  ( m  =  w  ->  ( A. j  e.  ( ZZ>=
`  m )DECID  j  e.  A  <->  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A ) )
9 seqeq1 10226 . . . . . 6  |-  ( m  =  w  ->  seq m (  x.  ,  F )  =  seq w (  x.  ,  F ) )
109breq1d 3939 . . . . 5  |-  ( m  =  w  ->  (  seq m (  x.  ,  F )  ~~>  x  <->  seq w
(  x.  ,  F
)  ~~>  x ) )
117, 8, 103anbi123d 1290 . . . 4  |-  ( m  =  w  ->  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  x.  ,  F )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x ) ) )
1211cbvrexvw 2659 . . 3  |-  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x )  <->  E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x ) )
13 reeanv 2600 . . . . 5  |-  ( E. w  e.  ZZ  E. m  e.  NN  (
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) ) )  <->  ( E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) ) )
14 simprl3 1028 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  seq w (  x.  ,  F )  ~~>  x )
15 simprl1 1026 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  C_  ( ZZ>= `  w
) )
16 uzssz 9350 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  w )  C_  ZZ
1715, 16sstrdi 3109 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  C_  ZZ )
18 1zzd 9086 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
1  e.  ZZ )
19 simplrr 525 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  m  e.  NN )
2019nnzd 9177 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  m  e.  ZZ )
2118, 20fzfigd 10209 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( 1 ... m
)  e.  Fin )
22 simprr 521 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
f : ( 1 ... m ) -1-1-onto-> A )
23 f1oeng 6651 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1 ... m
)  e.  Fin  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
1 ... m )  ~~  A )
2421, 22, 23syl2anc 408 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( 1 ... m
)  ~~  A )
2524ensymd 6677 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  ~~  ( 1 ... m ) )
26 enfii 6768 . . . . . . . . . . . . . . 15  |-  ( ( ( 1 ... m
)  e.  Fin  /\  A  ~~  ( 1 ... m ) )  ->  A  e.  Fin )
2721, 25, 26syl2anc 408 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  A  e.  Fin )
28 zfz1iso 10589 . . . . . . . . . . . . . 14  |-  ( ( A  C_  ZZ  /\  A  e.  Fin )  ->  E. g 
g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
2917, 27, 28syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  E. g  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) )
30 prodmo.1 . . . . . . . . . . . . . . . 16  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )
31 prodmo.2 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
3231ad4ant14 505 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( w  e.  ZZ  /\  m  e.  NN ) )  /\  ( ( ( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  /\  k  e.  A )  ->  B  e.  CC )
33 prodmodc.3 . . . . . . . . . . . . . . . 16  |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
)  /  k ]_ B ,  1 ) )
34 eqid 2139 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN  |->  if ( j  <_  ( `  A
) ,  [_ (
g `  j )  /  k ]_ B ,  1 ) )  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( g `  j )  /  k ]_ B ,  1 ) )
35 simpll2 1021 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A ) )  ->  A. j  e.  ( ZZ>=
`  w )DECID  j  e.  A )
3635adantl 275 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  ->  A. j  e.  ( ZZ>=
`  w )DECID  j  e.  A )
37 eleq1w 2200 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  k  ->  (
j  e.  A  <->  k  e.  A ) )
3837dcbid 823 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  k  ->  (DECID  j  e.  A  <-> DECID  k  e.  A )
)
3938rspcv 2785 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ZZ>= `  w
)  ->  ( A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  -> DECID  k  e.  A ) )
4036, 39mpan9 279 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( w  e.  ZZ  /\  m  e.  NN ) )  /\  ( ( ( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  /\  k  e.  ( ZZ>= `  w ) )  -> DECID  k  e.  A )
41 simplrr 525 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  ->  m  e.  NN )
42 simplrl 524 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  ->  w  e.  ZZ )
4315adantrr 470 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  ->  A  C_  ( ZZ>= `  w
) )
44 simprlr 527 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  -> 
f : ( 1 ... m ) -1-1-onto-> A )
45 simprr 521 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  -> 
g  Isom  <  ,  <  ( ( 1 ... ( `  A ) ) ,  A ) )
4630, 32, 33, 34, 40, 41, 42, 43, 44, 45prodmodclem2a 11350 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( (
( A  C_  ( ZZ>=
`  w )  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w (  x.  ,  F )  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
) ) )  ->  seq w (  x.  ,  F )  ~~>  (  seq 1 (  x.  ,  G ) `  m
) )
4746expr 372 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( g  Isom  <  ,  <  ( ( 1 ... ( `  A
) ) ,  A
)  ->  seq w
(  x.  ,  F
)  ~~>  (  seq 1
(  x.  ,  G
) `  m )
) )
4847exlimdv 1791 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( E. g  g 
Isom  <  ,  <  (
( 1 ... ( `  A ) ) ,  A )  ->  seq w (  x.  ,  F )  ~~>  (  seq 1 (  x.  ,  G ) `  m
) ) )
4929, 48mpd 13 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  seq w (  x.  ,  F )  ~~>  (  seq 1 (  x.  ,  G ) `  m
) )
50 climuni 11067 . . . . . . . . . . . 12  |-  ( (  seq w (  x.  ,  F )  ~~>  x  /\  seq w (  x.  ,  F )  ~~>  (  seq 1 (  x.  ,  G ) `  m
) )  ->  x  =  (  seq 1
(  x.  ,  G
) `  m )
)
5114, 49, 50syl2anc 408 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  ->  x  =  (  seq 1 (  x.  ,  G ) `  m
) )
52 eqeq2 2149 . . . . . . . . . . 11  |-  ( z  =  (  seq 1
(  x.  ,  G
) `  m )  ->  ( x  =  z  <-> 
x  =  (  seq 1 (  x.  ,  G ) `  m
) ) )
5351, 52syl5ibrcom 156 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( ( A  C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  f : ( 1 ... m ) -1-1-onto-> A ) )  -> 
( z  =  (  seq 1 (  x.  ,  G ) `  m )  ->  x  =  z ) )
5453expr 372 . . . . . . . . 9  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x ) )  ->  ( f : ( 1 ... m
)
-1-1-onto-> A  ->  ( z  =  (  seq 1 (  x.  ,  G ) `
 m )  ->  x  =  z )
) )
5554impd 252 . . . . . . . 8  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x ) )  ->  ( ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `
 m ) )  ->  x  =  z ) )
5655exlimdv 1791 . . . . . . 7  |-  ( ( ( ph  /\  (
w  e.  ZZ  /\  m  e.  NN )
)  /\  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x ) )  ->  ( E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  ->  x  =  z )
)
5756expimpd 360 . . . . . 6  |-  ( (
ph  /\  ( w  e.  ZZ  /\  m  e.  NN ) )  -> 
( ( ( A 
C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) )  ->  x  =  z ) )
5857rexlimdvva 2557 . . . . 5  |-  ( ph  ->  ( E. w  e.  ZZ  E. m  e.  NN  ( ( A 
C_  ( ZZ>= `  w
)  /\  A. j  e.  ( ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) )  ->  x  =  z ) )
5913, 58syl5bir 152 . . . 4  |-  ( ph  ->  ( ( E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x )  /\  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) ) )  ->  x  =  z ) )
6059expdimp 257 . . 3  |-  ( (
ph  /\  E. w  e.  ZZ  ( A  C_  ( ZZ>= `  w )  /\  A. j  e.  (
ZZ>= `  w )DECID  j  e.  A  /\  seq w
(  x.  ,  F
)  ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) )  ->  x  =  z ) )
6112, 60sylan2b 285 . 2  |-  ( (
ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  x.  ,  F
)  ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m
) )  ->  x  =  z ) )
625, 61sylan2 284 1  |-  ( (
ph  /\  E. m  e.  ZZ  ( ( A 
C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
`  m ) E. y ( y #  0  /\  seq n (  x.  ,  F )  ~~>  y )  /\  seq m (  x.  ,  F )  ~~>  x ) ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  z  =  (  seq 1 (  x.  ,  G ) `  m ) )  ->  x  =  z )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 819    /\ w3a 962    = wceq 1331   E.wex 1468    e. wcel 1480   A.wral 2416   E.wrex 2417   [_csb 3003    C_ wss 3071   ifcif 3474   class class class wbr 3929    |-> cmpt 3989   -1-1-onto->wf1o 5122   ` cfv 5123    Isom wiso 5124  (class class class)co 5774    ~~ cen 6632   Fincfn 6634   CCcc 7623   0cc0 7625   1c1 7626    x. cmul 7630    < clt 7805    <_ cle 7806   # cap 8348   NNcn 8725   ZZcz 9059   ZZ>=cuz 9331   ...cfz 9795    seqcseq 10223  ♯chash 10526    ~~> cli 11052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7716  ax-resscn 7717  ax-1cn 7718  ax-1re 7719  ax-icn 7720  ax-addcl 7721  ax-addrcl 7722  ax-mulcl 7723  ax-mulrcl 7724  ax-addcom 7725  ax-mulcom 7726  ax-addass 7727  ax-mulass 7728  ax-distr 7729  ax-i2m1 7730  ax-0lt1 7731  ax-1rid 7732  ax-0id 7733  ax-rnegex 7734  ax-precex 7735  ax-cnre 7736  ax-pre-ltirr 7737  ax-pre-ltwlin 7738  ax-pre-lttrn 7739  ax-pre-apti 7740  ax-pre-ltadd 7741  ax-pre-mulgt0 7742  ax-pre-mulext 7743  ax-arch 7744  ax-caucvg 7745
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7807  df-mnf 7808  df-xr 7809  df-ltxr 7810  df-le 7811  df-sub 7940  df-neg 7941  df-reap 8342  df-ap 8349  df-div 8438  df-inn 8726  df-2 8784  df-3 8785  df-4 8786  df-n0 8983  df-z 9060  df-uz 9332  df-q 9417  df-rp 9447  df-fz 9796  df-fzo 9925  df-seqfrec 10224  df-exp 10298  df-ihash 10527  df-cj 10619  df-re 10620  df-im 10621  df-rsqrt 10775  df-abs 10776  df-clim 11053
This theorem is referenced by:  prodmodc  11352
  Copyright terms: Public domain W3C validator