ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvalem Unicode version

Theorem grpinvalem 13188
Description: Lemma for grpinva 13189. (Contributed by NM, 9-Aug-2013.)
Hypotheses
Ref Expression
grpinva.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
grpinva.o  |-  ( ph  ->  O  e.  B )
grpinva.i  |-  ( (
ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )
grpinva.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
grpinva.r  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  O )
grpinvalem.x  |-  ( (
ph  /\  ps )  ->  X  e.  B )
grpinvalem.e  |-  ( (
ph  /\  ps )  ->  ( X  .+  X
)  =  X )
Assertion
Ref Expression
grpinvalem  |-  ( (
ph  /\  ps )  ->  X  =  O )
Distinct variable groups:    x, y, z, B    x, O, y, z    ph, x, y, z   
x,  .+ , y, z    y, X, z    ps, y
Allowed substitution hints:    ps( x, z)    X( x)

Proof of Theorem grpinvalem
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpinva.r . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  O )
21ralrimiva 2578 . . . 4  |-  ( ph  ->  A. x  e.  B  E. y  e.  B  ( y  .+  x
)  =  O )
3 oveq2 5951 . . . . . . 7  |-  ( x  =  z  ->  (
y  .+  x )  =  ( y  .+  z ) )
43eqeq1d 2213 . . . . . 6  |-  ( x  =  z  ->  (
( y  .+  x
)  =  O  <->  ( y  .+  z )  =  O ) )
54rexbidv 2506 . . . . 5  |-  ( x  =  z  ->  ( E. y  e.  B  ( y  .+  x
)  =  O  <->  E. y  e.  B  ( y  .+  z )  =  O ) )
65cbvralvw 2741 . . . 4  |-  ( A. x  e.  B  E. y  e.  B  (
y  .+  x )  =  O  <->  A. z  e.  B  E. y  e.  B  ( y  .+  z
)  =  O )
72, 6sylib 122 . . 3  |-  ( ph  ->  A. z  e.  B  E. y  e.  B  ( y  .+  z
)  =  O )
8 grpinvalem.x . . 3  |-  ( (
ph  /\  ps )  ->  X  e.  B )
9 oveq2 5951 . . . . . 6  |-  ( z  =  X  ->  (
y  .+  z )  =  ( y  .+  X ) )
109eqeq1d 2213 . . . . 5  |-  ( z  =  X  ->  (
( y  .+  z
)  =  O  <->  ( y  .+  X )  =  O ) )
1110rexbidv 2506 . . . 4  |-  ( z  =  X  ->  ( E. y  e.  B  ( y  .+  z
)  =  O  <->  E. y  e.  B  ( y  .+  X )  =  O ) )
1211rspccva 2875 . . 3  |-  ( ( A. z  e.  B  E. y  e.  B  ( y  .+  z
)  =  O  /\  X  e.  B )  ->  E. y  e.  B  ( y  .+  X
)  =  O )
137, 8, 12syl2an2r 595 . 2  |-  ( (
ph  /\  ps )  ->  E. y  e.  B  ( y  .+  X
)  =  O )
14 grpinvalem.e . . . . 5  |-  ( (
ph  /\  ps )  ->  ( X  .+  X
)  =  X )
1514oveq2d 5959 . . . 4  |-  ( (
ph  /\  ps )  ->  ( y  .+  ( X  .+  X ) )  =  ( y  .+  X ) )
1615adantr 276 . . 3  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  -> 
( y  .+  ( X  .+  X ) )  =  ( y  .+  X ) )
17 simprr 531 . . . . 5  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  -> 
( y  .+  X
)  =  O )
1817oveq1d 5958 . . . 4  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  -> 
( ( y  .+  X )  .+  X
)  =  ( O 
.+  X ) )
19 grpinva.a . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
2019caovassg 6104 . . . . . 6  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) )  -> 
( ( u  .+  v )  .+  w
)  =  ( u 
.+  ( v  .+  w ) ) )
2120ad4ant14 514 . . . . 5  |-  ( ( ( ( ph  /\  ps )  /\  (
y  e.  B  /\  ( y  .+  X
)  =  O ) )  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) )  -> 
( ( u  .+  v )  .+  w
)  =  ( u 
.+  ( v  .+  w ) ) )
22 simprl 529 . . . . 5  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  -> 
y  e.  B )
238adantr 276 . . . . 5  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  ->  X  e.  B )
2421, 22, 23, 23caovassd 6105 . . . 4  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  -> 
( ( y  .+  X )  .+  X
)  =  ( y 
.+  ( X  .+  X ) ) )
25 oveq2 5951 . . . . . . 7  |-  ( y  =  X  ->  ( O  .+  y )  =  ( O  .+  X
) )
26 id 19 . . . . . . 7  |-  ( y  =  X  ->  y  =  X )
2725, 26eqeq12d 2219 . . . . . 6  |-  ( y  =  X  ->  (
( O  .+  y
)  =  y  <->  ( O  .+  X )  =  X ) )
28 grpinva.i . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  ( O  .+  x )  =  x )
2928ralrimiva 2578 . . . . . . . 8  |-  ( ph  ->  A. x  e.  B  ( O  .+  x )  =  x )
30 oveq2 5951 . . . . . . . . . 10  |-  ( x  =  y  ->  ( O  .+  x )  =  ( O  .+  y
) )
31 id 19 . . . . . . . . . 10  |-  ( x  =  y  ->  x  =  y )
3230, 31eqeq12d 2219 . . . . . . . . 9  |-  ( x  =  y  ->  (
( O  .+  x
)  =  x  <->  ( O  .+  y )  =  y ) )
3332cbvralvw 2741 . . . . . . . 8  |-  ( A. x  e.  B  ( O  .+  x )  =  x  <->  A. y  e.  B  ( O  .+  y )  =  y )
3429, 33sylib 122 . . . . . . 7  |-  ( ph  ->  A. y  e.  B  ( O  .+  y )  =  y )
3534adantr 276 . . . . . 6  |-  ( (
ph  /\  ps )  ->  A. y  e.  B  ( O  .+  y )  =  y )
3627, 35, 8rspcdva 2881 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( O  .+  X
)  =  X )
3736adantr 276 . . . 4  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  -> 
( O  .+  X
)  =  X )
3818, 24, 373eqtr3d 2245 . . 3  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  -> 
( y  .+  ( X  .+  X ) )  =  X )
3916, 38, 173eqtr3d 2245 . 2  |-  ( ( ( ph  /\  ps )  /\  ( y  e.  B  /\  ( y 
.+  X )  =  O ) )  ->  X  =  O )
4013, 39rexlimddv 2627 1  |-  ( (
ph  /\  ps )  ->  X  =  O )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175   A.wral 2483   E.wrex 2484  (class class class)co 5943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5231  df-fv 5278  df-ov 5946
This theorem is referenced by:  grpinva  13189
  Copyright terms: Public domain W3C validator