| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpinvalem | Unicode version | ||
| Description: Lemma for grpinva 13303. (Contributed by NM, 9-Aug-2013.) |
| Ref | Expression |
|---|---|
| grpinva.c |
|
| grpinva.o |
|
| grpinva.i |
|
| grpinva.a |
|
| grpinva.r |
|
| grpinvalem.x |
|
| grpinvalem.e |
|
| Ref | Expression |
|---|---|
| grpinvalem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinva.r |
. . . . 5
| |
| 2 | 1 | ralrimiva 2580 |
. . . 4
|
| 3 | oveq2 5970 |
. . . . . . 7
| |
| 4 | 3 | eqeq1d 2215 |
. . . . . 6
|
| 5 | 4 | rexbidv 2508 |
. . . . 5
|
| 6 | 5 | cbvralvw 2743 |
. . . 4
|
| 7 | 2, 6 | sylib 122 |
. . 3
|
| 8 | grpinvalem.x |
. . 3
| |
| 9 | oveq2 5970 |
. . . . . 6
| |
| 10 | 9 | eqeq1d 2215 |
. . . . 5
|
| 11 | 10 | rexbidv 2508 |
. . . 4
|
| 12 | 11 | rspccva 2880 |
. . 3
|
| 13 | 7, 8, 12 | syl2an2r 595 |
. 2
|
| 14 | grpinvalem.e |
. . . . 5
| |
| 15 | 14 | oveq2d 5978 |
. . . 4
|
| 16 | 15 | adantr 276 |
. . 3
|
| 17 | simprr 531 |
. . . . 5
| |
| 18 | 17 | oveq1d 5977 |
. . . 4
|
| 19 | grpinva.a |
. . . . . . 7
| |
| 20 | 19 | caovassg 6123 |
. . . . . 6
|
| 21 | 20 | ad4ant14 514 |
. . . . 5
|
| 22 | simprl 529 |
. . . . 5
| |
| 23 | 8 | adantr 276 |
. . . . 5
|
| 24 | 21, 22, 23, 23 | caovassd 6124 |
. . . 4
|
| 25 | oveq2 5970 |
. . . . . . 7
| |
| 26 | id 19 |
. . . . . . 7
| |
| 27 | 25, 26 | eqeq12d 2221 |
. . . . . 6
|
| 28 | grpinva.i |
. . . . . . . . 9
| |
| 29 | 28 | ralrimiva 2580 |
. . . . . . . 8
|
| 30 | oveq2 5970 |
. . . . . . . . . 10
| |
| 31 | id 19 |
. . . . . . . . . 10
| |
| 32 | 30, 31 | eqeq12d 2221 |
. . . . . . . . 9
|
| 33 | 32 | cbvralvw 2743 |
. . . . . . . 8
|
| 34 | 29, 33 | sylib 122 |
. . . . . . 7
|
| 35 | 34 | adantr 276 |
. . . . . 6
|
| 36 | 27, 35, 8 | rspcdva 2886 |
. . . . 5
|
| 37 | 36 | adantr 276 |
. . . 4
|
| 38 | 18, 24, 37 | 3eqtr3d 2247 |
. . 3
|
| 39 | 16, 38, 17 | 3eqtr3d 2247 |
. 2
|
| 40 | 13, 39 | rexlimddv 2629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-iota 5246 df-fv 5293 df-ov 5965 |
| This theorem is referenced by: grpinva 13303 |
| Copyright terms: Public domain | W3C validator |