ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumwsubmcl Unicode version

Theorem gsumwsubmcl 13537
Description: Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
gsumwsubmcl  |-  ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  ->  ( G  gsumg  W )  e.  S
)

Proof of Theorem gsumwsubmcl
Dummy variables  x  y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6015 . . . . 5  |-  ( W  =  (/)  ->  ( G 
gsumg  W )  =  ( G  gsumg  (/) ) )
21adantl 277 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( G  gsumg  W )  =  ( G  gsumg  (/) ) )
3 submrcl 13512 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  G  e.  Mnd )
4 eqid 2229 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
54gsum0g 13437 . . . . . 6  |-  ( G  e.  Mnd  ->  ( G  gsumg  (/) )  =  ( 0g `  G ) )
63, 5syl 14 . . . . 5  |-  ( S  e.  (SubMnd `  G
)  ->  ( G  gsumg  (/) )  =  ( 0g
`  G ) )
76ad2antrr 488 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( G  gsumg  (/) )  =  ( 0g `  G ) )
82, 7eqtrd 2262 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( G  gsumg  W )  =  ( 0g `  G ) )
94subm0cl 13519 . . . 4  |-  ( S  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  S
)
109ad2antrr 488 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( 0g `  G )  e.  S )
118, 10eqeltrd 2306 . 2  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( G  gsumg  W )  e.  S
)
12 eqid 2229 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
13 eqid 2229 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
143ad2antrr 488 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  G  e.  Mnd )
15 lennncl 11099 . . . . . . 7  |-  ( ( W  e. Word  S  /\  W  =/=  (/) )  ->  ( `  W )  e.  NN )
1615adantll 476 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( `  W )  e.  NN )
17 nnm1nn0 9418 . . . . . 6  |-  ( ( `  W )  e.  NN  ->  ( ( `  W
)  -  1 )  e.  NN0 )
1816, 17syl 14 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (
( `  W )  - 
1 )  e.  NN0 )
19 nn0uz 9765 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
2018, 19eleqtrdi 2322 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (
( `  W )  - 
1 )  e.  (
ZZ>= `  0 ) )
21 wrdf 11085 . . . . . . 7  |-  ( W  e. Word  S  ->  W : ( 0..^ ( `  W ) ) --> S )
2221ad2antlr 489 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  W : ( 0..^ ( `  W ) ) --> S )
2316nnzd 9576 . . . . . . . 8  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( `  W )  e.  ZZ )
24 fzoval 10352 . . . . . . . 8  |-  ( ( `  W )  e.  ZZ  ->  ( 0..^ ( `  W
) )  =  ( 0 ... ( ( `  W )  -  1 ) ) )
2523, 24syl 14 . . . . . . 7  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (
0..^ ( `  W )
)  =  ( 0 ... ( ( `  W
)  -  1 ) ) )
2625feq2d 5461 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( W : ( 0..^ ( `  W ) ) --> S  <-> 
W : ( 0 ... ( ( `  W
)  -  1 ) ) --> S ) )
2722, 26mpbid 147 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  W : ( 0 ... ( ( `  W
)  -  1 ) ) --> S )
2812submss 13517 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  ( Base `  G ) )
2928ad2antrr 488 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  S  C_  ( Base `  G
) )
3027, 29fssd 5486 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  W : ( 0 ... ( ( `  W
)  -  1 ) ) --> ( Base `  G
) )
3112, 13, 14, 20, 30gsumval2 13438 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( G  gsumg  W )  =  (  seq 0 ( ( +g  `  G ) ,  W ) `  ( ( `  W )  -  1 ) ) )
32 fvexg 5648 . . . . 5  |-  ( ( W  e. Word  S  /\  x  e.  ( ZZ>= ` 
0 ) )  -> 
( W `  x
)  e.  _V )
3332ad4ant24 516 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  x  e.  ( ZZ>= ` 
0 ) )  -> 
( W `  x
)  e.  _V )
3427ffvelcdmda 5772 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... ( ( `  W
)  -  1 ) ) )  ->  ( W `  x )  e.  S )
3513submcl 13520 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x ( +g  `  G
) y )  e.  S )
36353expb 1228 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x
( +g  `  G ) y )  e.  S
)
3736ad4ant14 514 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
x ( +g  `  G
) y )  e.  S )
38 ssv 3246 . . . . 5  |-  S  C_  _V
3938a1i 9 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  S  C_ 
_V )
40 simprl 529 . . . . 5  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  x  e.  _V )
4114adantr 276 . . . . . 6  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  G  e.  Mnd )
42 plusgslid 13153 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4342slotex 13067 . . . . . 6  |-  ( G  e.  Mnd  ->  ( +g  `  G )  e. 
_V )
4441, 43syl 14 . . . . 5  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  ( +g  `  G )  e.  _V )
45 simprr 531 . . . . 5  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  y  e.  _V )
46 ovexg 6041 . . . . 5  |-  ( ( x  e.  _V  /\  ( +g  `  G )  e.  _V  /\  y  e.  _V )  ->  (
x ( +g  `  G
) y )  e. 
_V )
4740, 44, 45, 46syl3anc 1271 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  ( x
( +g  `  G ) y )  e.  _V )
4820, 33, 34, 37, 39, 47seq3clss 10701 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (  seq 0 ( ( +g  `  G ) ,  W
) `  ( ( `  W )  -  1 ) )  e.  S
)
4931, 48eqeltrd 2306 . 2  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( G  gsumg  W )  e.  S
)
50 wrdfin 11098 . . . . 5  |-  ( W  e. Word  S  ->  W  e.  Fin )
51 fin0or 7056 . . . . 5  |-  ( W  e.  Fin  ->  ( W  =  (/)  \/  E. j  j  e.  W
) )
5250, 51syl 14 . . . 4  |-  ( W  e. Word  S  ->  ( W  =  (/)  \/  E. j  j  e.  W
) )
53 n0r 3505 . . . . 5  |-  ( E. j  j  e.  W  ->  W  =/=  (/) )
5453orim2i 766 . . . 4  |-  ( ( W  =  (/)  \/  E. j  j  e.  W
)  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
5552, 54syl 14 . . 3  |-  ( W  e. Word  S  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
5655adantl 277 . 2  |-  ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
5711, 49, 56mpjaodan 803 1  |-  ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  ->  ( G  gsumg  W )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200    =/= wne 2400   _Vcvv 2799    C_ wss 3197   (/)c0 3491   -->wf 5314   ` cfv 5318  (class class class)co 6007   Fincfn 6895   0cc0 8007   1c1 8008    - cmin 8325   NNcn 9118   NN0cn0 9377   ZZcz 9454   ZZ>=cuz 9730   ...cfz 10212  ..^cfzo 10346    seqcseq 10677  ♯chash 11005  Word cword 11079   Basecbs 13040   +g cplusg 13118   0gc0g 13297    gsumg cgsu 13298   Mndcmnd 13457  SubMndcsubmnd 13499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-ihash 11006  df-word 11080  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-0g 13299  df-igsum 13300  df-submnd 13501
This theorem is referenced by:  gsumwcl  13538
  Copyright terms: Public domain W3C validator