ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumwsubmcl Unicode version

Theorem gsumwsubmcl 13068
Description: Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
gsumwsubmcl  |-  ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  ->  ( G  gsumg  W )  e.  S
)

Proof of Theorem gsumwsubmcl
Dummy variables  x  y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5926 . . . . 5  |-  ( W  =  (/)  ->  ( G 
gsumg  W )  =  ( G  gsumg  (/) ) )
21adantl 277 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( G  gsumg  W )  =  ( G  gsumg  (/) ) )
3 submrcl 13043 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  G  e.  Mnd )
4 eqid 2193 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
54gsum0g 12979 . . . . . 6  |-  ( G  e.  Mnd  ->  ( G  gsumg  (/) )  =  ( 0g `  G ) )
63, 5syl 14 . . . . 5  |-  ( S  e.  (SubMnd `  G
)  ->  ( G  gsumg  (/) )  =  ( 0g
`  G ) )
76ad2antrr 488 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( G  gsumg  (/) )  =  ( 0g `  G ) )
82, 7eqtrd 2226 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( G  gsumg  W )  =  ( 0g `  G ) )
94subm0cl 13050 . . . 4  |-  ( S  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  S
)
109ad2antrr 488 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( 0g `  G )  e.  S )
118, 10eqeltrd 2270 . 2  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( G  gsumg  W )  e.  S
)
12 eqid 2193 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
13 eqid 2193 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
143ad2antrr 488 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  G  e.  Mnd )
15 lennncl 10934 . . . . . . 7  |-  ( ( W  e. Word  S  /\  W  =/=  (/) )  ->  ( `  W )  e.  NN )
1615adantll 476 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( `  W )  e.  NN )
17 nnm1nn0 9281 . . . . . 6  |-  ( ( `  W )  e.  NN  ->  ( ( `  W
)  -  1 )  e.  NN0 )
1816, 17syl 14 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (
( `  W )  - 
1 )  e.  NN0 )
19 nn0uz 9627 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
2018, 19eleqtrdi 2286 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (
( `  W )  - 
1 )  e.  (
ZZ>= `  0 ) )
21 wrdf 10920 . . . . . . 7  |-  ( W  e. Word  S  ->  W : ( 0..^ ( `  W ) ) --> S )
2221ad2antlr 489 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  W : ( 0..^ ( `  W ) ) --> S )
2316nnzd 9438 . . . . . . . 8  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( `  W )  e.  ZZ )
24 fzoval 10214 . . . . . . . 8  |-  ( ( `  W )  e.  ZZ  ->  ( 0..^ ( `  W
) )  =  ( 0 ... ( ( `  W )  -  1 ) ) )
2523, 24syl 14 . . . . . . 7  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (
0..^ ( `  W )
)  =  ( 0 ... ( ( `  W
)  -  1 ) ) )
2625feq2d 5391 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( W : ( 0..^ ( `  W ) ) --> S  <-> 
W : ( 0 ... ( ( `  W
)  -  1 ) ) --> S ) )
2722, 26mpbid 147 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  W : ( 0 ... ( ( `  W
)  -  1 ) ) --> S )
2812submss 13048 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  ( Base `  G ) )
2928ad2antrr 488 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  S  C_  ( Base `  G
) )
3027, 29fssd 5416 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  W : ( 0 ... ( ( `  W
)  -  1 ) ) --> ( Base `  G
) )
3112, 13, 14, 20, 30gsumval2 12980 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( G  gsumg  W )  =  (  seq 0 ( ( +g  `  G ) ,  W ) `  ( ( `  W )  -  1 ) ) )
32 fvexg 5573 . . . . 5  |-  ( ( W  e. Word  S  /\  x  e.  ( ZZ>= ` 
0 ) )  -> 
( W `  x
)  e.  _V )
3332ad4ant24 516 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  x  e.  ( ZZ>= ` 
0 ) )  -> 
( W `  x
)  e.  _V )
3427ffvelcdmda 5693 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... ( ( `  W
)  -  1 ) ) )  ->  ( W `  x )  e.  S )
3513submcl 13051 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x ( +g  `  G
) y )  e.  S )
36353expb 1206 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x
( +g  `  G ) y )  e.  S
)
3736ad4ant14 514 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
x ( +g  `  G
) y )  e.  S )
38 ssv 3201 . . . . 5  |-  S  C_  _V
3938a1i 9 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  S  C_ 
_V )
40 simprl 529 . . . . 5  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  x  e.  _V )
4114adantr 276 . . . . . 6  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  G  e.  Mnd )
42 plusgslid 12730 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4342slotex 12645 . . . . . 6  |-  ( G  e.  Mnd  ->  ( +g  `  G )  e. 
_V )
4441, 43syl 14 . . . . 5  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  ( +g  `  G )  e.  _V )
45 simprr 531 . . . . 5  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  y  e.  _V )
46 ovexg 5952 . . . . 5  |-  ( ( x  e.  _V  /\  ( +g  `  G )  e.  _V  /\  y  e.  _V )  ->  (
x ( +g  `  G
) y )  e. 
_V )
4740, 44, 45, 46syl3anc 1249 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  ( x
( +g  `  G ) y )  e.  _V )
4820, 33, 34, 37, 39, 47seq3clss 10542 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (  seq 0 ( ( +g  `  G ) ,  W
) `  ( ( `  W )  -  1 ) )  e.  S
)
4931, 48eqeltrd 2270 . 2  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( G  gsumg  W )  e.  S
)
50 wrdfin 10933 . . . . 5  |-  ( W  e. Word  S  ->  W  e.  Fin )
51 fin0or 6942 . . . . 5  |-  ( W  e.  Fin  ->  ( W  =  (/)  \/  E. j  j  e.  W
) )
5250, 51syl 14 . . . 4  |-  ( W  e. Word  S  ->  ( W  =  (/)  \/  E. j  j  e.  W
) )
53 n0r 3460 . . . . 5  |-  ( E. j  j  e.  W  ->  W  =/=  (/) )
5453orim2i 762 . . . 4  |-  ( ( W  =  (/)  \/  E. j  j  e.  W
)  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
5552, 54syl 14 . . 3  |-  ( W  e. Word  S  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
5655adantl 277 . 2  |-  ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
5711, 49, 56mpjaodan 799 1  |-  ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  ->  ( G  gsumg  W )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364   E.wex 1503    e. wcel 2164    =/= wne 2364   _Vcvv 2760    C_ wss 3153   (/)c0 3446   -->wf 5250   ` cfv 5254  (class class class)co 5918   Fincfn 6794   0cc0 7872   1c1 7873    - cmin 8190   NNcn 8982   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074  ..^cfzo 10208    seqcseq 10518  ♯chash 10846  Word cword 10914   Basecbs 12618   +g cplusg 12695   0gc0g 12867    gsumg cgsu 12868   Mndcmnd 12997  SubMndcsubmnd 13030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-ihash 10847  df-word 10915  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-igsum 12870  df-submnd 13032
This theorem is referenced by:  gsumwcl  13069
  Copyright terms: Public domain W3C validator