ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumwsubmcl Unicode version

Theorem gsumwsubmcl 13515
Description: Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
gsumwsubmcl  |-  ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  ->  ( G  gsumg  W )  e.  S
)

Proof of Theorem gsumwsubmcl
Dummy variables  x  y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6002 . . . . 5  |-  ( W  =  (/)  ->  ( G 
gsumg  W )  =  ( G  gsumg  (/) ) )
21adantl 277 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( G  gsumg  W )  =  ( G  gsumg  (/) ) )
3 submrcl 13490 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  G  e.  Mnd )
4 eqid 2229 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
54gsum0g 13415 . . . . . 6  |-  ( G  e.  Mnd  ->  ( G  gsumg  (/) )  =  ( 0g `  G ) )
63, 5syl 14 . . . . 5  |-  ( S  e.  (SubMnd `  G
)  ->  ( G  gsumg  (/) )  =  ( 0g
`  G ) )
76ad2antrr 488 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( G  gsumg  (/) )  =  ( 0g `  G ) )
82, 7eqtrd 2262 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( G  gsumg  W )  =  ( 0g `  G ) )
94subm0cl 13497 . . . 4  |-  ( S  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  S
)
109ad2antrr 488 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( 0g `  G )  e.  S )
118, 10eqeltrd 2306 . 2  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( G  gsumg  W )  e.  S
)
12 eqid 2229 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
13 eqid 2229 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
143ad2antrr 488 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  G  e.  Mnd )
15 lennncl 11078 . . . . . . 7  |-  ( ( W  e. Word  S  /\  W  =/=  (/) )  ->  ( `  W )  e.  NN )
1615adantll 476 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( `  W )  e.  NN )
17 nnm1nn0 9398 . . . . . 6  |-  ( ( `  W )  e.  NN  ->  ( ( `  W
)  -  1 )  e.  NN0 )
1816, 17syl 14 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (
( `  W )  - 
1 )  e.  NN0 )
19 nn0uz 9745 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
2018, 19eleqtrdi 2322 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (
( `  W )  - 
1 )  e.  (
ZZ>= `  0 ) )
21 wrdf 11064 . . . . . . 7  |-  ( W  e. Word  S  ->  W : ( 0..^ ( `  W ) ) --> S )
2221ad2antlr 489 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  W : ( 0..^ ( `  W ) ) --> S )
2316nnzd 9556 . . . . . . . 8  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( `  W )  e.  ZZ )
24 fzoval 10332 . . . . . . . 8  |-  ( ( `  W )  e.  ZZ  ->  ( 0..^ ( `  W
) )  =  ( 0 ... ( ( `  W )  -  1 ) ) )
2523, 24syl 14 . . . . . . 7  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (
0..^ ( `  W )
)  =  ( 0 ... ( ( `  W
)  -  1 ) ) )
2625feq2d 5457 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( W : ( 0..^ ( `  W ) ) --> S  <-> 
W : ( 0 ... ( ( `  W
)  -  1 ) ) --> S ) )
2722, 26mpbid 147 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  W : ( 0 ... ( ( `  W
)  -  1 ) ) --> S )
2812submss 13495 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  ( Base `  G ) )
2928ad2antrr 488 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  S  C_  ( Base `  G
) )
3027, 29fssd 5482 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  W : ( 0 ... ( ( `  W
)  -  1 ) ) --> ( Base `  G
) )
3112, 13, 14, 20, 30gsumval2 13416 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( G  gsumg  W )  =  (  seq 0 ( ( +g  `  G ) ,  W ) `  ( ( `  W )  -  1 ) ) )
32 fvexg 5642 . . . . 5  |-  ( ( W  e. Word  S  /\  x  e.  ( ZZ>= ` 
0 ) )  -> 
( W `  x
)  e.  _V )
3332ad4ant24 516 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  x  e.  ( ZZ>= ` 
0 ) )  -> 
( W `  x
)  e.  _V )
3427ffvelcdmda 5763 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... ( ( `  W
)  -  1 ) ) )  ->  ( W `  x )  e.  S )
3513submcl 13498 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x ( +g  `  G
) y )  e.  S )
36353expb 1228 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x
( +g  `  G ) y )  e.  S
)
3736ad4ant14 514 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
x ( +g  `  G
) y )  e.  S )
38 ssv 3246 . . . . 5  |-  S  C_  _V
3938a1i 9 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  S  C_ 
_V )
40 simprl 529 . . . . 5  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  x  e.  _V )
4114adantr 276 . . . . . 6  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  G  e.  Mnd )
42 plusgslid 13131 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4342slotex 13045 . . . . . 6  |-  ( G  e.  Mnd  ->  ( +g  `  G )  e. 
_V )
4441, 43syl 14 . . . . 5  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  ( +g  `  G )  e.  _V )
45 simprr 531 . . . . 5  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  y  e.  _V )
46 ovexg 6028 . . . . 5  |-  ( ( x  e.  _V  /\  ( +g  `  G )  e.  _V  /\  y  e.  _V )  ->  (
x ( +g  `  G
) y )  e. 
_V )
4740, 44, 45, 46syl3anc 1271 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  ( x
( +g  `  G ) y )  e.  _V )
4820, 33, 34, 37, 39, 47seq3clss 10680 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (  seq 0 ( ( +g  `  G ) ,  W
) `  ( ( `  W )  -  1 ) )  e.  S
)
4931, 48eqeltrd 2306 . 2  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( G  gsumg  W )  e.  S
)
50 wrdfin 11077 . . . . 5  |-  ( W  e. Word  S  ->  W  e.  Fin )
51 fin0or 7036 . . . . 5  |-  ( W  e.  Fin  ->  ( W  =  (/)  \/  E. j  j  e.  W
) )
5250, 51syl 14 . . . 4  |-  ( W  e. Word  S  ->  ( W  =  (/)  \/  E. j  j  e.  W
) )
53 n0r 3505 . . . . 5  |-  ( E. j  j  e.  W  ->  W  =/=  (/) )
5453orim2i 766 . . . 4  |-  ( ( W  =  (/)  \/  E. j  j  e.  W
)  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
5552, 54syl 14 . . 3  |-  ( W  e. Word  S  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
5655adantl 277 . 2  |-  ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
5711, 49, 56mpjaodan 803 1  |-  ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  ->  ( G  gsumg  W )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200    =/= wne 2400   _Vcvv 2799    C_ wss 3197   (/)c0 3491   -->wf 5310   ` cfv 5314  (class class class)co 5994   Fincfn 6877   0cc0 7987   1c1 7988    - cmin 8305   NNcn 9098   NN0cn0 9357   ZZcz 9434   ZZ>=cuz 9710   ...cfz 10192  ..^cfzo 10326    seqcseq 10656  ♯chash 10984  Word cword 11058   Basecbs 13018   +g cplusg 13096   0gc0g 13275    gsumg cgsu 13276   Mndcmnd 13435  SubMndcsubmnd 13477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-2 9157  df-n0 9358  df-z 9435  df-uz 9711  df-fz 10193  df-fzo 10327  df-seqfrec 10657  df-ihash 10985  df-word 11059  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-igsum 13278  df-submnd 13479
This theorem is referenced by:  gsumwcl  13516
  Copyright terms: Public domain W3C validator