ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumwsubmcl Unicode version

Theorem gsumwsubmcl 13200
Description: Closure of the composite in any submonoid. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
gsumwsubmcl  |-  ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  ->  ( G  gsumg  W )  e.  S
)

Proof of Theorem gsumwsubmcl
Dummy variables  x  y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5933 . . . . 5  |-  ( W  =  (/)  ->  ( G 
gsumg  W )  =  ( G  gsumg  (/) ) )
21adantl 277 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( G  gsumg  W )  =  ( G  gsumg  (/) ) )
3 submrcl 13175 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  G  e.  Mnd )
4 eqid 2196 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
54gsum0g 13100 . . . . . 6  |-  ( G  e.  Mnd  ->  ( G  gsumg  (/) )  =  ( 0g `  G ) )
63, 5syl 14 . . . . 5  |-  ( S  e.  (SubMnd `  G
)  ->  ( G  gsumg  (/) )  =  ( 0g
`  G ) )
76ad2antrr 488 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( G  gsumg  (/) )  =  ( 0g `  G ) )
82, 7eqtrd 2229 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( G  gsumg  W )  =  ( 0g `  G ) )
94subm0cl 13182 . . . 4  |-  ( S  e.  (SubMnd `  G
)  ->  ( 0g `  G )  e.  S
)
109ad2antrr 488 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( 0g `  G )  e.  S )
118, 10eqeltrd 2273 . 2  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =  (/) )  ->  ( G  gsumg  W )  e.  S
)
12 eqid 2196 . . . 4  |-  ( Base `  G )  =  (
Base `  G )
13 eqid 2196 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
143ad2antrr 488 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  G  e.  Mnd )
15 lennncl 10974 . . . . . . 7  |-  ( ( W  e. Word  S  /\  W  =/=  (/) )  ->  ( `  W )  e.  NN )
1615adantll 476 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( `  W )  e.  NN )
17 nnm1nn0 9309 . . . . . 6  |-  ( ( `  W )  e.  NN  ->  ( ( `  W
)  -  1 )  e.  NN0 )
1816, 17syl 14 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (
( `  W )  - 
1 )  e.  NN0 )
19 nn0uz 9655 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
2018, 19eleqtrdi 2289 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (
( `  W )  - 
1 )  e.  (
ZZ>= `  0 ) )
21 wrdf 10960 . . . . . . 7  |-  ( W  e. Word  S  ->  W : ( 0..^ ( `  W ) ) --> S )
2221ad2antlr 489 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  W : ( 0..^ ( `  W ) ) --> S )
2316nnzd 9466 . . . . . . . 8  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( `  W )  e.  ZZ )
24 fzoval 10242 . . . . . . . 8  |-  ( ( `  W )  e.  ZZ  ->  ( 0..^ ( `  W
) )  =  ( 0 ... ( ( `  W )  -  1 ) ) )
2523, 24syl 14 . . . . . . 7  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (
0..^ ( `  W )
)  =  ( 0 ... ( ( `  W
)  -  1 ) ) )
2625feq2d 5398 . . . . . 6  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( W : ( 0..^ ( `  W ) ) --> S  <-> 
W : ( 0 ... ( ( `  W
)  -  1 ) ) --> S ) )
2722, 26mpbid 147 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  W : ( 0 ... ( ( `  W
)  -  1 ) ) --> S )
2812submss 13180 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  ( Base `  G ) )
2928ad2antrr 488 . . . . 5  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  S  C_  ( Base `  G
) )
3027, 29fssd 5423 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  W : ( 0 ... ( ( `  W
)  -  1 ) ) --> ( Base `  G
) )
3112, 13, 14, 20, 30gsumval2 13101 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( G  gsumg  W )  =  (  seq 0 ( ( +g  `  G ) ,  W ) `  ( ( `  W )  -  1 ) ) )
32 fvexg 5580 . . . . 5  |-  ( ( W  e. Word  S  /\  x  e.  ( ZZ>= ` 
0 ) )  -> 
( W `  x
)  e.  _V )
3332ad4ant24 516 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  x  e.  ( ZZ>= ` 
0 ) )  -> 
( W `  x
)  e.  _V )
3427ffvelcdmda 5700 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... ( ( `  W
)  -  1 ) ) )  ->  ( W `  x )  e.  S )
3513submcl 13183 . . . . . 6  |-  ( ( S  e.  (SubMnd `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x ( +g  `  G
) y )  e.  S )
36353expb 1206 . . . . 5  |-  ( ( S  e.  (SubMnd `  G )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x
( +g  `  G ) y )  e.  S
)
3736ad4ant14 514 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  S  /\  y  e.  S
) )  ->  (
x ( +g  `  G
) y )  e.  S )
38 ssv 3206 . . . . 5  |-  S  C_  _V
3938a1i 9 . . . 4  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  S  C_ 
_V )
40 simprl 529 . . . . 5  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  x  e.  _V )
4114adantr 276 . . . . . 6  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  G  e.  Mnd )
42 plusgslid 12817 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
4342slotex 12732 . . . . . 6  |-  ( G  e.  Mnd  ->  ( +g  `  G )  e. 
_V )
4441, 43syl 14 . . . . 5  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  ( +g  `  G )  e.  _V )
45 simprr 531 . . . . 5  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  y  e.  _V )
46 ovexg 5959 . . . . 5  |-  ( ( x  e.  _V  /\  ( +g  `  G )  e.  _V  /\  y  e.  _V )  ->  (
x ( +g  `  G
) y )  e. 
_V )
4740, 44, 45, 46syl3anc 1249 . . . 4  |-  ( ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  /\  ( x  e.  _V  /\  y  e.  _V )
)  ->  ( x
( +g  `  G ) y )  e.  _V )
4820, 33, 34, 37, 39, 47seq3clss 10582 . . 3  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  (  seq 0 ( ( +g  `  G ) ,  W
) `  ( ( `  W )  -  1 ) )  e.  S
)
4931, 48eqeltrd 2273 . 2  |-  ( ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  /\  W  =/=  (/) )  ->  ( G  gsumg  W )  e.  S
)
50 wrdfin 10973 . . . . 5  |-  ( W  e. Word  S  ->  W  e.  Fin )
51 fin0or 6956 . . . . 5  |-  ( W  e.  Fin  ->  ( W  =  (/)  \/  E. j  j  e.  W
) )
5250, 51syl 14 . . . 4  |-  ( W  e. Word  S  ->  ( W  =  (/)  \/  E. j  j  e.  W
) )
53 n0r 3465 . . . . 5  |-  ( E. j  j  e.  W  ->  W  =/=  (/) )
5453orim2i 762 . . . 4  |-  ( ( W  =  (/)  \/  E. j  j  e.  W
)  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
5552, 54syl 14 . . 3  |-  ( W  e. Word  S  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
5655adantl 277 . 2  |-  ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
5711, 49, 56mpjaodan 799 1  |-  ( ( S  e.  (SubMnd `  G )  /\  W  e. Word  S )  ->  ( G  gsumg  W )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364   E.wex 1506    e. wcel 2167    =/= wne 2367   _Vcvv 2763    C_ wss 3157   (/)c0 3451   -->wf 5255   ` cfv 5259  (class class class)co 5925   Fincfn 6808   0cc0 7898   1c1 7899    - cmin 8216   NNcn 9009   NN0cn0 9268   ZZcz 9345   ZZ>=cuz 9620   ...cfz 10102  ..^cfzo 10236    seqcseq 10558  ♯chash 10886  Word cword 10954   Basecbs 12705   +g cplusg 12782   0gc0g 12960    gsumg cgsu 12961   Mndcmnd 13120  SubMndcsubmnd 13162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-2 9068  df-n0 9269  df-z 9346  df-uz 9621  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-ihash 10887  df-word 10955  df-ndx 12708  df-slot 12709  df-base 12711  df-plusg 12795  df-0g 12962  df-igsum 12963  df-submnd 13164
This theorem is referenced by:  gsumwcl  13201
  Copyright terms: Public domain W3C validator