ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngintm Unicode version

Theorem subrngintm 13768
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.)
Assertion
Ref Expression
subrngintm  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubRng `  R ) )
Distinct variable groups:    R, j    S, j

Proof of Theorem subrngintm
Dummy variables  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 13760 . . . . 5  |-  ( r  e.  (SubRng `  R
)  ->  r  e.  (SubGrp `  R ) )
21ssriv 3187 . . . 4  |-  (SubRng `  R )  C_  (SubGrp `  R )
3 sstr 3191 . . . 4  |-  ( ( S  C_  (SubRng `  R
)  /\  (SubRng `  R
)  C_  (SubGrp `  R
) )  ->  S  C_  (SubGrp `  R )
)
42, 3mpan2 425 . . 3  |-  ( S 
C_  (SubRng `  R )  ->  S  C_  (SubGrp `  R
) )
5 subgintm 13328 . . 3  |-  ( ( S  C_  (SubGrp `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubGrp `  R ) )
64, 5sylan 283 . 2  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubGrp `  R ) )
7 ssel2 3178 . . . . . . 7  |-  ( ( S  C_  (SubRng `  R
)  /\  r  e.  S )  ->  r  e.  (SubRng `  R )
)
87ad4ant14 514 . . . . . 6  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  r  e.  (SubRng `  R ) )
9 simprl 529 . . . . . . 7  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  x  e.  |^| S )
10 elinti 3883 . . . . . . . 8  |-  ( x  e.  |^| S  ->  (
r  e.  S  ->  x  e.  r )
)
1110imp 124 . . . . . . 7  |-  ( ( x  e.  |^| S  /\  r  e.  S
)  ->  x  e.  r )
129, 11sylan 283 . . . . . 6  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  x  e.  r )
13 simprr 531 . . . . . . 7  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  y  e.  |^| S )
14 elinti 3883 . . . . . . . 8  |-  ( y  e.  |^| S  ->  (
r  e.  S  -> 
y  e.  r ) )
1514imp 124 . . . . . . 7  |-  ( ( y  e.  |^| S  /\  r  e.  S
)  ->  y  e.  r )
1613, 15sylan 283 . . . . . 6  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  y  e.  r )
17 eqid 2196 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
1817subrngmcl 13765 . . . . . 6  |-  ( ( r  e.  (SubRng `  R )  /\  x  e.  r  /\  y  e.  r )  ->  (
x ( .r `  R ) y )  e.  r )
198, 12, 16, 18syl3anc 1249 . . . . 5  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  ( x
( .r `  R
) y )  e.  r )
2019ralrimiva 2570 . . . 4  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  A. r  e.  S  ( x ( .r
`  R ) y )  e.  r )
21 ssel 3177 . . . . . . . . 9  |-  ( S 
C_  (SubRng `  R )  ->  ( j  e.  S  ->  j  e.  (SubRng `  R ) ) )
22 subrngrcl 13759 . . . . . . . . 9  |-  ( j  e.  (SubRng `  R
)  ->  R  e. Rng )
2321, 22syl6 33 . . . . . . . 8  |-  ( S 
C_  (SubRng `  R )  ->  ( j  e.  S  ->  R  e. Rng ) )
2423exlimdv 1833 . . . . . . 7  |-  ( S 
C_  (SubRng `  R )  ->  ( E. j  j  e.  S  ->  R  e. Rng ) )
2524imp 124 . . . . . 6  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  R  e. Rng )
26 vex 2766 . . . . . . . 8  |-  x  e. 
_V
2726a1i 9 . . . . . . 7  |-  ( R  e. Rng  ->  x  e.  _V )
28 mulrslid 12809 . . . . . . . 8  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2928slotex 12705 . . . . . . 7  |-  ( R  e. Rng  ->  ( .r `  R )  e.  _V )
30 vex 2766 . . . . . . . 8  |-  y  e. 
_V
3130a1i 9 . . . . . . 7  |-  ( R  e. Rng  ->  y  e.  _V )
32 ovexg 5956 . . . . . . 7  |-  ( ( x  e.  _V  /\  ( .r `  R )  e.  _V  /\  y  e.  _V )  ->  (
x ( .r `  R ) y )  e.  _V )
3327, 29, 31, 32syl3anc 1249 . . . . . 6  |-  ( R  e. Rng  ->  ( x ( .r `  R ) y )  e.  _V )
34 elintg 3882 . . . . . 6  |-  ( ( x ( .r `  R ) y )  e.  _V  ->  (
( x ( .r
`  R ) y )  e.  |^| S  <->  A. r  e.  S  ( x ( .r `  R ) y )  e.  r ) )
3525, 33, 343syl 17 . . . . 5  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  ( ( x ( .r `  R
) y )  e. 
|^| S  <->  A. r  e.  S  ( x
( .r `  R
) y )  e.  r ) )
3635adantr 276 . . . 4  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( ( x ( .r `  R
) y )  e. 
|^| S  <->  A. r  e.  S  ( x
( .r `  R
) y )  e.  r ) )
3720, 36mpbird 167 . . 3  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( x ( .r `  R ) y )  e.  |^| S )
3837ralrimivva 2579 . 2  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S )
39 eqid 2196 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
4039, 17issubrng2 13766 . . 3  |-  ( R  e. Rng  ->  ( |^| S  e.  (SubRng `  R )  <->  (
|^| S  e.  (SubGrp `  R )  /\  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S ) ) )
4125, 40syl 14 . 2  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  ( |^| S  e.  (SubRng `  R )  <->  (
|^| S  e.  (SubGrp `  R )  /\  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S ) ) )
426, 38, 41mpbir2and 946 1  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubRng `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1506    e. wcel 2167   A.wral 2475   _Vcvv 2763    C_ wss 3157   |^|cint 3874   ` cfv 5258  (class class class)co 5922   Basecbs 12678   .rcmulr 12756  SubGrpcsubg 13297  Rngcrng 13488  SubRngcsubrng 13753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-subg 13300  df-cmn 13416  df-abl 13417  df-mgp 13477  df-rng 13489  df-subrng 13754
This theorem is referenced by:  subrngin  13769
  Copyright terms: Public domain W3C validator