ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngintm Unicode version

Theorem subrngintm 13916
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.)
Assertion
Ref Expression
subrngintm  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubRng `  R ) )
Distinct variable groups:    R, j    S, j

Proof of Theorem subrngintm
Dummy variables  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 13908 . . . . 5  |-  ( r  e.  (SubRng `  R
)  ->  r  e.  (SubGrp `  R ) )
21ssriv 3196 . . . 4  |-  (SubRng `  R )  C_  (SubGrp `  R )
3 sstr 3200 . . . 4  |-  ( ( S  C_  (SubRng `  R
)  /\  (SubRng `  R
)  C_  (SubGrp `  R
) )  ->  S  C_  (SubGrp `  R )
)
42, 3mpan2 425 . . 3  |-  ( S 
C_  (SubRng `  R )  ->  S  C_  (SubGrp `  R
) )
5 subgintm 13476 . . 3  |-  ( ( S  C_  (SubGrp `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubGrp `  R ) )
64, 5sylan 283 . 2  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubGrp `  R ) )
7 ssel2 3187 . . . . . . 7  |-  ( ( S  C_  (SubRng `  R
)  /\  r  e.  S )  ->  r  e.  (SubRng `  R )
)
87ad4ant14 514 . . . . . 6  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  r  e.  (SubRng `  R ) )
9 simprl 529 . . . . . . 7  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  x  e.  |^| S )
10 elinti 3893 . . . . . . . 8  |-  ( x  e.  |^| S  ->  (
r  e.  S  ->  x  e.  r )
)
1110imp 124 . . . . . . 7  |-  ( ( x  e.  |^| S  /\  r  e.  S
)  ->  x  e.  r )
129, 11sylan 283 . . . . . 6  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  x  e.  r )
13 simprr 531 . . . . . . 7  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  y  e.  |^| S )
14 elinti 3893 . . . . . . . 8  |-  ( y  e.  |^| S  ->  (
r  e.  S  -> 
y  e.  r ) )
1514imp 124 . . . . . . 7  |-  ( ( y  e.  |^| S  /\  r  e.  S
)  ->  y  e.  r )
1613, 15sylan 283 . . . . . 6  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  y  e.  r )
17 eqid 2204 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
1817subrngmcl 13913 . . . . . 6  |-  ( ( r  e.  (SubRng `  R )  /\  x  e.  r  /\  y  e.  r )  ->  (
x ( .r `  R ) y )  e.  r )
198, 12, 16, 18syl3anc 1249 . . . . 5  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  ( x
( .r `  R
) y )  e.  r )
2019ralrimiva 2578 . . . 4  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  A. r  e.  S  ( x ( .r
`  R ) y )  e.  r )
21 ssel 3186 . . . . . . . . 9  |-  ( S 
C_  (SubRng `  R )  ->  ( j  e.  S  ->  j  e.  (SubRng `  R ) ) )
22 subrngrcl 13907 . . . . . . . . 9  |-  ( j  e.  (SubRng `  R
)  ->  R  e. Rng )
2321, 22syl6 33 . . . . . . . 8  |-  ( S 
C_  (SubRng `  R )  ->  ( j  e.  S  ->  R  e. Rng ) )
2423exlimdv 1841 . . . . . . 7  |-  ( S 
C_  (SubRng `  R )  ->  ( E. j  j  e.  S  ->  R  e. Rng ) )
2524imp 124 . . . . . 6  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  R  e. Rng )
26 vex 2774 . . . . . . . 8  |-  x  e. 
_V
2726a1i 9 . . . . . . 7  |-  ( R  e. Rng  ->  x  e.  _V )
28 mulrslid 12906 . . . . . . . 8  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2928slotex 12801 . . . . . . 7  |-  ( R  e. Rng  ->  ( .r `  R )  e.  _V )
30 vex 2774 . . . . . . . 8  |-  y  e. 
_V
3130a1i 9 . . . . . . 7  |-  ( R  e. Rng  ->  y  e.  _V )
32 ovexg 5977 . . . . . . 7  |-  ( ( x  e.  _V  /\  ( .r `  R )  e.  _V  /\  y  e.  _V )  ->  (
x ( .r `  R ) y )  e.  _V )
3327, 29, 31, 32syl3anc 1249 . . . . . 6  |-  ( R  e. Rng  ->  ( x ( .r `  R ) y )  e.  _V )
34 elintg 3892 . . . . . 6  |-  ( ( x ( .r `  R ) y )  e.  _V  ->  (
( x ( .r
`  R ) y )  e.  |^| S  <->  A. r  e.  S  ( x ( .r `  R ) y )  e.  r ) )
3525, 33, 343syl 17 . . . . 5  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  ( ( x ( .r `  R
) y )  e. 
|^| S  <->  A. r  e.  S  ( x
( .r `  R
) y )  e.  r ) )
3635adantr 276 . . . 4  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( ( x ( .r `  R
) y )  e. 
|^| S  <->  A. r  e.  S  ( x
( .r `  R
) y )  e.  r ) )
3720, 36mpbird 167 . . 3  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( x ( .r `  R ) y )  e.  |^| S )
3837ralrimivva 2587 . 2  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S )
39 eqid 2204 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
4039, 17issubrng2 13914 . . 3  |-  ( R  e. Rng  ->  ( |^| S  e.  (SubRng `  R )  <->  (
|^| S  e.  (SubGrp `  R )  /\  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S ) ) )
4125, 40syl 14 . 2  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  ( |^| S  e.  (SubRng `  R )  <->  (
|^| S  e.  (SubGrp `  R )  /\  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S ) ) )
426, 38, 41mpbir2and 946 1  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubRng `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1514    e. wcel 2175   A.wral 2483   _Vcvv 2771    C_ wss 3165   |^|cint 3884   ` cfv 5270  (class class class)co 5943   Basecbs 12774   .rcmulr 12852  SubGrpcsubg 13445  Rngcrng 13636  SubRngcsubrng 13901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-iress 12782  df-plusg 12864  df-mulr 12865  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-minusg 13278  df-subg 13448  df-cmn 13564  df-abl 13565  df-mgp 13625  df-rng 13637  df-subrng 13902
This theorem is referenced by:  subrngin  13917
  Copyright terms: Public domain W3C validator