ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngintm Unicode version

Theorem subrngintm 13556
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.)
Assertion
Ref Expression
subrngintm  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubRng `  R ) )
Distinct variable groups:    R, j    S, j

Proof of Theorem subrngintm
Dummy variables  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 13548 . . . . 5  |-  ( r  e.  (SubRng `  R
)  ->  r  e.  (SubGrp `  R ) )
21ssriv 3174 . . . 4  |-  (SubRng `  R )  C_  (SubGrp `  R )
3 sstr 3178 . . . 4  |-  ( ( S  C_  (SubRng `  R
)  /\  (SubRng `  R
)  C_  (SubGrp `  R
) )  ->  S  C_  (SubGrp `  R )
)
42, 3mpan2 425 . . 3  |-  ( S 
C_  (SubRng `  R )  ->  S  C_  (SubGrp `  R
) )
5 subgintm 13134 . . 3  |-  ( ( S  C_  (SubGrp `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubGrp `  R ) )
64, 5sylan 283 . 2  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubGrp `  R ) )
7 ssel2 3165 . . . . . . 7  |-  ( ( S  C_  (SubRng `  R
)  /\  r  e.  S )  ->  r  e.  (SubRng `  R )
)
87ad4ant14 514 . . . . . 6  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  r  e.  (SubRng `  R ) )
9 simprl 529 . . . . . . 7  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  x  e.  |^| S )
10 elinti 3868 . . . . . . . 8  |-  ( x  e.  |^| S  ->  (
r  e.  S  ->  x  e.  r )
)
1110imp 124 . . . . . . 7  |-  ( ( x  e.  |^| S  /\  r  e.  S
)  ->  x  e.  r )
129, 11sylan 283 . . . . . 6  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  x  e.  r )
13 simprr 531 . . . . . . 7  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  y  e.  |^| S )
14 elinti 3868 . . . . . . . 8  |-  ( y  e.  |^| S  ->  (
r  e.  S  -> 
y  e.  r ) )
1514imp 124 . . . . . . 7  |-  ( ( y  e.  |^| S  /\  r  e.  S
)  ->  y  e.  r )
1613, 15sylan 283 . . . . . 6  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  y  e.  r )
17 eqid 2189 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
1817subrngmcl 13553 . . . . . 6  |-  ( ( r  e.  (SubRng `  R )  /\  x  e.  r  /\  y  e.  r )  ->  (
x ( .r `  R ) y )  e.  r )
198, 12, 16, 18syl3anc 1249 . . . . 5  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  ( x
( .r `  R
) y )  e.  r )
2019ralrimiva 2563 . . . 4  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  A. r  e.  S  ( x ( .r
`  R ) y )  e.  r )
21 ssel 3164 . . . . . . . . 9  |-  ( S 
C_  (SubRng `  R )  ->  ( j  e.  S  ->  j  e.  (SubRng `  R ) ) )
22 subrngrcl 13547 . . . . . . . . 9  |-  ( j  e.  (SubRng `  R
)  ->  R  e. Rng )
2321, 22syl6 33 . . . . . . . 8  |-  ( S 
C_  (SubRng `  R )  ->  ( j  e.  S  ->  R  e. Rng ) )
2423exlimdv 1830 . . . . . . 7  |-  ( S 
C_  (SubRng `  R )  ->  ( E. j  j  e.  S  ->  R  e. Rng ) )
2524imp 124 . . . . . 6  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  R  e. Rng )
26 vex 2755 . . . . . . . 8  |-  x  e. 
_V
2726a1i 9 . . . . . . 7  |-  ( R  e. Rng  ->  x  e.  _V )
28 mulrslid 12640 . . . . . . . 8  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2928slotex 12538 . . . . . . 7  |-  ( R  e. Rng  ->  ( .r `  R )  e.  _V )
30 vex 2755 . . . . . . . 8  |-  y  e. 
_V
3130a1i 9 . . . . . . 7  |-  ( R  e. Rng  ->  y  e.  _V )
32 ovexg 5929 . . . . . . 7  |-  ( ( x  e.  _V  /\  ( .r `  R )  e.  _V  /\  y  e.  _V )  ->  (
x ( .r `  R ) y )  e.  _V )
3327, 29, 31, 32syl3anc 1249 . . . . . 6  |-  ( R  e. Rng  ->  ( x ( .r `  R ) y )  e.  _V )
34 elintg 3867 . . . . . 6  |-  ( ( x ( .r `  R ) y )  e.  _V  ->  (
( x ( .r
`  R ) y )  e.  |^| S  <->  A. r  e.  S  ( x ( .r `  R ) y )  e.  r ) )
3525, 33, 343syl 17 . . . . 5  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  ( ( x ( .r `  R
) y )  e. 
|^| S  <->  A. r  e.  S  ( x
( .r `  R
) y )  e.  r ) )
3635adantr 276 . . . 4  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( ( x ( .r `  R
) y )  e. 
|^| S  <->  A. r  e.  S  ( x
( .r `  R
) y )  e.  r ) )
3720, 36mpbird 167 . . 3  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( x ( .r `  R ) y )  e.  |^| S )
3837ralrimivva 2572 . 2  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S )
39 eqid 2189 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
4039, 17issubrng2 13554 . . 3  |-  ( R  e. Rng  ->  ( |^| S  e.  (SubRng `  R )  <->  (
|^| S  e.  (SubGrp `  R )  /\  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S ) ) )
4125, 40syl 14 . 2  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  ( |^| S  e.  (SubRng `  R )  <->  (
|^| S  e.  (SubGrp `  R )  /\  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S ) ) )
426, 38, 41mpbir2and 946 1  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubRng `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1503    e. wcel 2160   A.wral 2468   _Vcvv 2752    C_ wss 3144   |^|cint 3859   ` cfv 5235  (class class class)co 5895   Basecbs 12511   .rcmulr 12587  SubGrpcsubg 13103  Rngcrng 13283  SubRngcsubrng 13541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-lttrn 7954  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-inn 8949  df-2 9007  df-3 9008  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-iress 12519  df-plusg 12599  df-mulr 12600  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-minusg 12946  df-subg 13106  df-cmn 13222  df-abl 13223  df-mgp 13272  df-rng 13284  df-subrng 13542
This theorem is referenced by:  subrngin  13557
  Copyright terms: Public domain W3C validator