ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngintm Unicode version

Theorem subrngintm 13708
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.)
Assertion
Ref Expression
subrngintm  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubRng `  R ) )
Distinct variable groups:    R, j    S, j

Proof of Theorem subrngintm
Dummy variables  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 13700 . . . . 5  |-  ( r  e.  (SubRng `  R
)  ->  r  e.  (SubGrp `  R ) )
21ssriv 3183 . . . 4  |-  (SubRng `  R )  C_  (SubGrp `  R )
3 sstr 3187 . . . 4  |-  ( ( S  C_  (SubRng `  R
)  /\  (SubRng `  R
)  C_  (SubGrp `  R
) )  ->  S  C_  (SubGrp `  R )
)
42, 3mpan2 425 . . 3  |-  ( S 
C_  (SubRng `  R )  ->  S  C_  (SubGrp `  R
) )
5 subgintm 13268 . . 3  |-  ( ( S  C_  (SubGrp `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubGrp `  R ) )
64, 5sylan 283 . 2  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubGrp `  R ) )
7 ssel2 3174 . . . . . . 7  |-  ( ( S  C_  (SubRng `  R
)  /\  r  e.  S )  ->  r  e.  (SubRng `  R )
)
87ad4ant14 514 . . . . . 6  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  r  e.  (SubRng `  R ) )
9 simprl 529 . . . . . . 7  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  x  e.  |^| S )
10 elinti 3879 . . . . . . . 8  |-  ( x  e.  |^| S  ->  (
r  e.  S  ->  x  e.  r )
)
1110imp 124 . . . . . . 7  |-  ( ( x  e.  |^| S  /\  r  e.  S
)  ->  x  e.  r )
129, 11sylan 283 . . . . . 6  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  x  e.  r )
13 simprr 531 . . . . . . 7  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  y  e.  |^| S )
14 elinti 3879 . . . . . . . 8  |-  ( y  e.  |^| S  ->  (
r  e.  S  -> 
y  e.  r ) )
1514imp 124 . . . . . . 7  |-  ( ( y  e.  |^| S  /\  r  e.  S
)  ->  y  e.  r )
1613, 15sylan 283 . . . . . 6  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  y  e.  r )
17 eqid 2193 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
1817subrngmcl 13705 . . . . . 6  |-  ( ( r  e.  (SubRng `  R )  /\  x  e.  r  /\  y  e.  r )  ->  (
x ( .r `  R ) y )  e.  r )
198, 12, 16, 18syl3anc 1249 . . . . 5  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  ( x
( .r `  R
) y )  e.  r )
2019ralrimiva 2567 . . . 4  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  A. r  e.  S  ( x ( .r
`  R ) y )  e.  r )
21 ssel 3173 . . . . . . . . 9  |-  ( S 
C_  (SubRng `  R )  ->  ( j  e.  S  ->  j  e.  (SubRng `  R ) ) )
22 subrngrcl 13699 . . . . . . . . 9  |-  ( j  e.  (SubRng `  R
)  ->  R  e. Rng )
2321, 22syl6 33 . . . . . . . 8  |-  ( S 
C_  (SubRng `  R )  ->  ( j  e.  S  ->  R  e. Rng ) )
2423exlimdv 1830 . . . . . . 7  |-  ( S 
C_  (SubRng `  R )  ->  ( E. j  j  e.  S  ->  R  e. Rng ) )
2524imp 124 . . . . . 6  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  R  e. Rng )
26 vex 2763 . . . . . . . 8  |-  x  e. 
_V
2726a1i 9 . . . . . . 7  |-  ( R  e. Rng  ->  x  e.  _V )
28 mulrslid 12749 . . . . . . . 8  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2928slotex 12645 . . . . . . 7  |-  ( R  e. Rng  ->  ( .r `  R )  e.  _V )
30 vex 2763 . . . . . . . 8  |-  y  e. 
_V
3130a1i 9 . . . . . . 7  |-  ( R  e. Rng  ->  y  e.  _V )
32 ovexg 5952 . . . . . . 7  |-  ( ( x  e.  _V  /\  ( .r `  R )  e.  _V  /\  y  e.  _V )  ->  (
x ( .r `  R ) y )  e.  _V )
3327, 29, 31, 32syl3anc 1249 . . . . . 6  |-  ( R  e. Rng  ->  ( x ( .r `  R ) y )  e.  _V )
34 elintg 3878 . . . . . 6  |-  ( ( x ( .r `  R ) y )  e.  _V  ->  (
( x ( .r
`  R ) y )  e.  |^| S  <->  A. r  e.  S  ( x ( .r `  R ) y )  e.  r ) )
3525, 33, 343syl 17 . . . . 5  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  ( ( x ( .r `  R
) y )  e. 
|^| S  <->  A. r  e.  S  ( x
( .r `  R
) y )  e.  r ) )
3635adantr 276 . . . 4  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( ( x ( .r `  R
) y )  e. 
|^| S  <->  A. r  e.  S  ( x
( .r `  R
) y )  e.  r ) )
3720, 36mpbird 167 . . 3  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( x ( .r `  R ) y )  e.  |^| S )
3837ralrimivva 2576 . 2  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S )
39 eqid 2193 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
4039, 17issubrng2 13706 . . 3  |-  ( R  e. Rng  ->  ( |^| S  e.  (SubRng `  R )  <->  (
|^| S  e.  (SubGrp `  R )  /\  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S ) ) )
4125, 40syl 14 . 2  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  ( |^| S  e.  (SubRng `  R )  <->  (
|^| S  e.  (SubGrp `  R )  /\  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S ) ) )
426, 38, 41mpbir2and 946 1  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubRng `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1503    e. wcel 2164   A.wral 2472   _Vcvv 2760    C_ wss 3153   |^|cint 3870   ` cfv 5254  (class class class)co 5918   Basecbs 12618   .rcmulr 12696  SubGrpcsubg 13237  Rngcrng 13428  SubRngcsubrng 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-subg 13240  df-cmn 13356  df-abl 13357  df-mgp 13417  df-rng 13429  df-subrng 13694
This theorem is referenced by:  subrngin  13709
  Copyright terms: Public domain W3C validator