ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrngintm Unicode version

Theorem subrngintm 14059
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.)
Assertion
Ref Expression
subrngintm  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubRng `  R ) )
Distinct variable groups:    R, j    S, j

Proof of Theorem subrngintm
Dummy variables  r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 14051 . . . . 5  |-  ( r  e.  (SubRng `  R
)  ->  r  e.  (SubGrp `  R ) )
21ssriv 3201 . . . 4  |-  (SubRng `  R )  C_  (SubGrp `  R )
3 sstr 3205 . . . 4  |-  ( ( S  C_  (SubRng `  R
)  /\  (SubRng `  R
)  C_  (SubGrp `  R
) )  ->  S  C_  (SubGrp `  R )
)
42, 3mpan2 425 . . 3  |-  ( S 
C_  (SubRng `  R )  ->  S  C_  (SubGrp `  R
) )
5 subgintm 13619 . . 3  |-  ( ( S  C_  (SubGrp `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubGrp `  R ) )
64, 5sylan 283 . 2  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubGrp `  R ) )
7 ssel2 3192 . . . . . . 7  |-  ( ( S  C_  (SubRng `  R
)  /\  r  e.  S )  ->  r  e.  (SubRng `  R )
)
87ad4ant14 514 . . . . . 6  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  r  e.  (SubRng `  R ) )
9 simprl 529 . . . . . . 7  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  x  e.  |^| S )
10 elinti 3903 . . . . . . . 8  |-  ( x  e.  |^| S  ->  (
r  e.  S  ->  x  e.  r )
)
1110imp 124 . . . . . . 7  |-  ( ( x  e.  |^| S  /\  r  e.  S
)  ->  x  e.  r )
129, 11sylan 283 . . . . . 6  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  x  e.  r )
13 simprr 531 . . . . . . 7  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  y  e.  |^| S )
14 elinti 3903 . . . . . . . 8  |-  ( y  e.  |^| S  ->  (
r  e.  S  -> 
y  e.  r ) )
1514imp 124 . . . . . . 7  |-  ( ( y  e.  |^| S  /\  r  e.  S
)  ->  y  e.  r )
1613, 15sylan 283 . . . . . 6  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  y  e.  r )
17 eqid 2206 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
1817subrngmcl 14056 . . . . . 6  |-  ( ( r  e.  (SubRng `  R )  /\  x  e.  r  /\  y  e.  r )  ->  (
x ( .r `  R ) y )  e.  r )
198, 12, 16, 18syl3anc 1250 . . . . 5  |-  ( ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  /\  r  e.  S
)  ->  ( x
( .r `  R
) y )  e.  r )
2019ralrimiva 2580 . . . 4  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  A. r  e.  S  ( x ( .r
`  R ) y )  e.  r )
21 ssel 3191 . . . . . . . . 9  |-  ( S 
C_  (SubRng `  R )  ->  ( j  e.  S  ->  j  e.  (SubRng `  R ) ) )
22 subrngrcl 14050 . . . . . . . . 9  |-  ( j  e.  (SubRng `  R
)  ->  R  e. Rng )
2321, 22syl6 33 . . . . . . . 8  |-  ( S 
C_  (SubRng `  R )  ->  ( j  e.  S  ->  R  e. Rng ) )
2423exlimdv 1843 . . . . . . 7  |-  ( S 
C_  (SubRng `  R )  ->  ( E. j  j  e.  S  ->  R  e. Rng ) )
2524imp 124 . . . . . 6  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  R  e. Rng )
26 vex 2776 . . . . . . . 8  |-  x  e. 
_V
2726a1i 9 . . . . . . 7  |-  ( R  e. Rng  ->  x  e.  _V )
28 mulrslid 13049 . . . . . . . 8  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2928slotex 12944 . . . . . . 7  |-  ( R  e. Rng  ->  ( .r `  R )  e.  _V )
30 vex 2776 . . . . . . . 8  |-  y  e. 
_V
3130a1i 9 . . . . . . 7  |-  ( R  e. Rng  ->  y  e.  _V )
32 ovexg 5996 . . . . . . 7  |-  ( ( x  e.  _V  /\  ( .r `  R )  e.  _V  /\  y  e.  _V )  ->  (
x ( .r `  R ) y )  e.  _V )
3327, 29, 31, 32syl3anc 1250 . . . . . 6  |-  ( R  e. Rng  ->  ( x ( .r `  R ) y )  e.  _V )
34 elintg 3902 . . . . . 6  |-  ( ( x ( .r `  R ) y )  e.  _V  ->  (
( x ( .r
`  R ) y )  e.  |^| S  <->  A. r  e.  S  ( x ( .r `  R ) y )  e.  r ) )
3525, 33, 343syl 17 . . . . 5  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  ( ( x ( .r `  R
) y )  e. 
|^| S  <->  A. r  e.  S  ( x
( .r `  R
) y )  e.  r ) )
3635adantr 276 . . . 4  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( ( x ( .r `  R
) y )  e. 
|^| S  <->  A. r  e.  S  ( x
( .r `  R
) y )  e.  r ) )
3720, 36mpbird 167 . . 3  |-  ( ( ( S  C_  (SubRng `  R )  /\  E. j  j  e.  S
)  /\  ( x  e.  |^| S  /\  y  e.  |^| S ) )  ->  ( x ( .r `  R ) y )  e.  |^| S )
3837ralrimivva 2589 . 2  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S )
39 eqid 2206 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
4039, 17issubrng2 14057 . . 3  |-  ( R  e. Rng  ->  ( |^| S  e.  (SubRng `  R )  <->  (
|^| S  e.  (SubGrp `  R )  /\  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S ) ) )
4125, 40syl 14 . 2  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  ( |^| S  e.  (SubRng `  R )  <->  (
|^| S  e.  (SubGrp `  R )  /\  A. x  e.  |^| S A. y  e.  |^| S ( x ( .r `  R ) y )  e.  |^| S ) ) )
426, 38, 41mpbir2and 947 1  |-  ( ( S  C_  (SubRng `  R
)  /\  E. j 
j  e.  S )  ->  |^| S  e.  (SubRng `  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1516    e. wcel 2177   A.wral 2485   _Vcvv 2773    C_ wss 3170   |^|cint 3894   ` cfv 5285  (class class class)co 5962   Basecbs 12917   .rcmulr 12995  SubGrpcsubg 13588  Rngcrng 13779  SubRngcsubrng 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067  df-2 9125  df-3 9126  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-iress 12925  df-plusg 13007  df-mulr 13008  df-0g 13175  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-grp 13420  df-minusg 13421  df-subg 13591  df-cmn 13707  df-abl 13708  df-mgp 13768  df-rng 13780  df-subrng 14045
This theorem is referenced by:  subrngin  14060
  Copyright terms: Public domain W3C validator