ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumwmhm Unicode version

Theorem gsumwmhm 13517
Description: Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypothesis
Ref Expression
gsumwmhm.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
gsumwmhm  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )

Proof of Theorem gsumwmhm
Dummy variables  x  y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
2 eqid 2229 . . . . 5  |-  ( 0g
`  N )  =  ( 0g `  N
)
31, 2mhm0 13487 . . . 4  |-  ( H  e.  ( M MndHom  N
)  ->  ( H `  ( 0g `  M
) )  =  ( 0g `  N ) )
43ad2antrr 488 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( H `  ( 0g `  M ) )  =  ( 0g `  N ) )
5 oveq2 6002 . . . . . 6  |-  ( W  =  (/)  ->  ( M 
gsumg  W )  =  ( M  gsumg  (/) ) )
65adantl 277 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( M  gsumg  W )  =  ( M  gsumg  (/) ) )
7 mhmrcl1 13482 . . . . . . 7  |-  ( H  e.  ( M MndHom  N
)  ->  M  e.  Mnd )
87ad2antrr 488 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  ->  M  e.  Mnd )
91gsum0g 13415 . . . . . 6  |-  ( M  e.  Mnd  ->  ( M  gsumg  (/) )  =  ( 0g `  M ) )
108, 9syl 14 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( M  gsumg  (/) )  =  ( 0g `  M ) )
116, 10eqtrd 2262 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( M  gsumg  W )  =  ( 0g `  M ) )
1211fveq2d 5627 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( H `  ( 0g `  M ) ) )
13 coeq2 4877 . . . . . . 7  |-  ( W  =  (/)  ->  ( H  o.  W )  =  ( H  o.  (/) ) )
14 co02 5238 . . . . . . 7  |-  ( H  o.  (/) )  =  (/)
1513, 14eqtrdi 2278 . . . . . 6  |-  ( W  =  (/)  ->  ( H  o.  W )  =  (/) )
1615oveq2d 6010 . . . . 5  |-  ( W  =  (/)  ->  ( N 
gsumg  ( H  o.  W
) )  =  ( N  gsumg  (/) ) )
1716adantl 277 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( N  gsumg  ( H  o.  W
) )  =  ( N  gsumg  (/) ) )
18 mhmrcl2 13483 . . . . . 6  |-  ( H  e.  ( M MndHom  N
)  ->  N  e.  Mnd )
1918ad2antrr 488 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  ->  N  e.  Mnd )
202gsum0g 13415 . . . . 5  |-  ( N  e.  Mnd  ->  ( N  gsumg  (/) )  =  ( 0g `  N ) )
2119, 20syl 14 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( N  gsumg  (/) )  =  ( 0g `  N ) )
2217, 21eqtrd 2262 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( N  gsumg  ( H  o.  W
) )  =  ( 0g `  N ) )
234, 12, 223eqtr4d 2272 . 2  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
247ad2antrr 488 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  M  e.  Mnd )
25 gsumwmhm.b . . . . . . 7  |-  B  =  ( Base `  M
)
26 eqid 2229 . . . . . . 7  |-  ( +g  `  M )  =  ( +g  `  M )
2725, 26mndcl 13442 . . . . . 6  |-  ( ( M  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  M ) y )  e.  B )
28273expb 1228 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  M
) y )  e.  B )
2924, 28sylan 283 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  M ) y )  e.  B )
30 wrdf 11064 . . . . . . 7  |-  ( W  e. Word  B  ->  W : ( 0..^ ( `  W ) ) --> B )
3130ad2antlr 489 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W : ( 0..^ ( `  W ) ) --> B )
32 wrdfin 11077 . . . . . . . . . . . 12  |-  ( W  e. Word  B  ->  W  e.  Fin )
3332adantl 277 . . . . . . . . . . 11  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  W  e.  Fin )
34 hashnncl 11004 . . . . . . . . . . 11  |-  ( W  e.  Fin  ->  (
( `  W )  e.  NN  <->  W  =/=  (/) ) )
3533, 34syl 14 . . . . . . . . . 10  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  (
( `  W )  e.  NN  <->  W  =/=  (/) ) )
3635biimpar 297 . . . . . . . . 9  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( `  W )  e.  NN )
3736nnzd 9556 . . . . . . . 8  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( `  W )  e.  ZZ )
38 fzoval 10332 . . . . . . . 8  |-  ( ( `  W )  e.  ZZ  ->  ( 0..^ ( `  W
) )  =  ( 0 ... ( ( `  W )  -  1 ) ) )
3937, 38syl 14 . . . . . . 7  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( 0..^ ( `  W
) )  =  ( 0 ... ( ( `  W )  -  1 ) ) )
4039feq2d 5457 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( W : ( 0..^ ( `  W
) ) --> B  <->  W :
( 0 ... (
( `  W )  - 
1 ) ) --> B ) )
4131, 40mpbid 147 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W : ( 0 ... ( ( `  W
)  -  1 ) ) --> B )
4241ffvelcdmda 5763 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( `  W )  - 
1 ) ) )  ->  ( W `  x )  e.  B
)
43 nnm1nn0 9398 . . . . . 6  |-  ( ( `  W )  e.  NN  ->  ( ( `  W
)  -  1 )  e.  NN0 )
4436, 43syl 14 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( ( `  W
)  -  1 )  e.  NN0 )
45 nn0uz 9745 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
4644, 45eleqtrdi 2322 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( ( `  W
)  -  1 )  e.  ( ZZ>= `  0
) )
47 eqid 2229 . . . . . . 7  |-  ( +g  `  N )  =  ( +g  `  N )
4825, 26, 47mhmlin 13486 . . . . . 6  |-  ( ( H  e.  ( M MndHom  N )  /\  x  e.  B  /\  y  e.  B )  ->  ( H `  ( x
( +g  `  M ) y ) )  =  ( ( H `  x ) ( +g  `  N ) ( H `
 y ) ) )
49483expb 1228 . . . . 5  |-  ( ( H  e.  ( M MndHom  N )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( H `  ( x ( +g  `  M ) y ) )  =  ( ( H `  x ) ( +g  `  N
) ( H `  y ) ) )
5049ad4ant14 514 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( H `  (
x ( +g  `  M
) y ) )  =  ( ( H `
 x ) ( +g  `  N ) ( H `  y
) ) )
5141ffnd 5470 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W  Fn  ( 0 ... ( ( `  W
)  -  1 ) ) )
52 fvco2 5696 . . . . . 6  |-  ( ( W  Fn  ( 0 ... ( ( `  W
)  -  1 ) )  /\  x  e.  ( 0 ... (
( `  W )  - 
1 ) ) )  ->  ( ( H  o.  W ) `  x )  =  ( H `  ( W `
 x ) ) )
5351, 52sylan 283 . . . . 5  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( `  W )  - 
1 ) ) )  ->  ( ( H  o.  W ) `  x )  =  ( H `  ( W `
 x ) ) )
5453eqcomd 2235 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( `  W )  - 
1 ) ) )  ->  ( H `  ( W `  x ) )  =  ( ( H  o.  W ) `
 x ) )
55 simplr 528 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W  e. Word  B )
56 coexg 5269 . . . . 5  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H  o.  W )  e.  _V )
5756adantr 276 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H  o.  W
)  e.  _V )
58 plusgslid 13131 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
5958slotex 13045 . . . . . 6  |-  ( M  e.  Mnd  ->  ( +g  `  M )  e. 
_V )
607, 59syl 14 . . . . 5  |-  ( H  e.  ( M MndHom  N
)  ->  ( +g  `  M )  e.  _V )
6160ad2antrr 488 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( +g  `  M )  e.  _V )
6258slotex 13045 . . . . . 6  |-  ( N  e.  Mnd  ->  ( +g  `  N )  e. 
_V )
6318, 62syl 14 . . . . 5  |-  ( H  e.  ( M MndHom  N
)  ->  ( +g  `  N )  e.  _V )
6463ad2antrr 488 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( +g  `  N )  e.  _V )
6529, 42, 46, 50, 54, 55, 57, 61, 64seqhomog 10739 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  (  seq 0 ( ( +g  `  M ) ,  W
) `  ( ( `  W )  -  1 ) ) )  =  (  seq 0 ( ( +g  `  N
) ,  ( H  o.  W ) ) `
 ( ( `  W
)  -  1 ) ) )
6625, 26, 24, 46, 41gsumval2 13416 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( M  gsumg  W )  =  (  seq 0 ( ( +g  `  M ) ,  W ) `  ( ( `  W )  -  1 ) ) )
6766fveq2d 5627 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( H `  (  seq 0 ( ( +g  `  M ) ,  W
) `  ( ( `  W )  -  1 ) ) ) )
68 eqid 2229 . . . 4  |-  ( Base `  N )  =  (
Base `  N )
6918ad2antrr 488 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  N  e.  Mnd )
7025, 68mhmf 13484 . . . . . 6  |-  ( H  e.  ( M MndHom  N
)  ->  H : B
--> ( Base `  N
) )
7170ad2antrr 488 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  H : B --> ( Base `  N ) )
72 fco 5485 . . . . 5  |-  ( ( H : B --> ( Base `  N )  /\  W : ( 0 ... ( ( `  W
)  -  1 ) ) --> B )  -> 
( H  o.  W
) : ( 0 ... ( ( `  W
)  -  1 ) ) --> ( Base `  N
) )
7371, 41, 72syl2anc 411 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H  o.  W
) : ( 0 ... ( ( `  W
)  -  1 ) ) --> ( Base `  N
) )
7468, 47, 69, 46, 73gsumval2 13416 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( N  gsumg  ( H  o.  W
) )  =  (  seq 0 ( ( +g  `  N ) ,  ( H  o.  W ) ) `  ( ( `  W )  -  1 ) ) )
7565, 67, 743eqtr4d 2272 . 2  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
76 fin0or 7036 . . . 4  |-  ( W  e.  Fin  ->  ( W  =  (/)  \/  E. j  j  e.  W
) )
77 n0r 3505 . . . . 5  |-  ( E. j  j  e.  W  ->  W  =/=  (/) )
7877orim2i 766 . . . 4  |-  ( ( W  =  (/)  \/  E. j  j  e.  W
)  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
7976, 78syl 14 . . 3  |-  ( W  e.  Fin  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
8033, 79syl 14 . 2  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
8123, 75, 80mpjaodan 803 1  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200    =/= wne 2400   _Vcvv 2799   (/)c0 3491    o. ccom 4720    Fn wfn 5309   -->wf 5310   ` cfv 5314  (class class class)co 5994   Fincfn 6877   0cc0 7987   1c1 7988    - cmin 8305   NNcn 9098   NN0cn0 9357   ZZcz 9434   ZZ>=cuz 9710   ...cfz 10192  ..^cfzo 10326    seqcseq 10656  ♯chash 10984  Word cword 11058   Basecbs 13018   +g cplusg 13096   0gc0g 13275    gsumg cgsu 13276   Mndcmnd 13435   MndHom cmhm 13476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-er 6670  df-map 6787  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-2 9157  df-n0 9358  df-z 9435  df-uz 9711  df-fz 10193  df-fzo 10327  df-seqfrec 10657  df-ihash 10985  df-word 11059  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-igsum 13278  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-mhm 13478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator