ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumwmhm Unicode version

Theorem gsumwmhm 13202
Description: Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypothesis
Ref Expression
gsumwmhm.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
gsumwmhm  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )

Proof of Theorem gsumwmhm
Dummy variables  x  y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
2 eqid 2196 . . . . 5  |-  ( 0g
`  N )  =  ( 0g `  N
)
31, 2mhm0 13172 . . . 4  |-  ( H  e.  ( M MndHom  N
)  ->  ( H `  ( 0g `  M
) )  =  ( 0g `  N ) )
43ad2antrr 488 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( H `  ( 0g `  M ) )  =  ( 0g `  N ) )
5 oveq2 5933 . . . . . 6  |-  ( W  =  (/)  ->  ( M 
gsumg  W )  =  ( M  gsumg  (/) ) )
65adantl 277 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( M  gsumg  W )  =  ( M  gsumg  (/) ) )
7 mhmrcl1 13167 . . . . . . 7  |-  ( H  e.  ( M MndHom  N
)  ->  M  e.  Mnd )
87ad2antrr 488 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  ->  M  e.  Mnd )
91gsum0g 13100 . . . . . 6  |-  ( M  e.  Mnd  ->  ( M  gsumg  (/) )  =  ( 0g `  M ) )
108, 9syl 14 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( M  gsumg  (/) )  =  ( 0g `  M ) )
116, 10eqtrd 2229 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( M  gsumg  W )  =  ( 0g `  M ) )
1211fveq2d 5565 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( H `  ( 0g `  M ) ) )
13 coeq2 4825 . . . . . . 7  |-  ( W  =  (/)  ->  ( H  o.  W )  =  ( H  o.  (/) ) )
14 co02 5184 . . . . . . 7  |-  ( H  o.  (/) )  =  (/)
1513, 14eqtrdi 2245 . . . . . 6  |-  ( W  =  (/)  ->  ( H  o.  W )  =  (/) )
1615oveq2d 5941 . . . . 5  |-  ( W  =  (/)  ->  ( N 
gsumg  ( H  o.  W
) )  =  ( N  gsumg  (/) ) )
1716adantl 277 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( N  gsumg  ( H  o.  W
) )  =  ( N  gsumg  (/) ) )
18 mhmrcl2 13168 . . . . . 6  |-  ( H  e.  ( M MndHom  N
)  ->  N  e.  Mnd )
1918ad2antrr 488 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  ->  N  e.  Mnd )
202gsum0g 13100 . . . . 5  |-  ( N  e.  Mnd  ->  ( N  gsumg  (/) )  =  ( 0g `  N ) )
2119, 20syl 14 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( N  gsumg  (/) )  =  ( 0g `  N ) )
2217, 21eqtrd 2229 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( N  gsumg  ( H  o.  W
) )  =  ( 0g `  N ) )
234, 12, 223eqtr4d 2239 . 2  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
247ad2antrr 488 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  M  e.  Mnd )
25 gsumwmhm.b . . . . . . 7  |-  B  =  ( Base `  M
)
26 eqid 2196 . . . . . . 7  |-  ( +g  `  M )  =  ( +g  `  M )
2725, 26mndcl 13127 . . . . . 6  |-  ( ( M  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  M ) y )  e.  B )
28273expb 1206 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  M
) y )  e.  B )
2924, 28sylan 283 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  M ) y )  e.  B )
30 wrdf 10960 . . . . . . 7  |-  ( W  e. Word  B  ->  W : ( 0..^ ( `  W ) ) --> B )
3130ad2antlr 489 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W : ( 0..^ ( `  W ) ) --> B )
32 wrdfin 10973 . . . . . . . . . . . 12  |-  ( W  e. Word  B  ->  W  e.  Fin )
3332adantl 277 . . . . . . . . . . 11  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  W  e.  Fin )
34 hashnncl 10906 . . . . . . . . . . 11  |-  ( W  e.  Fin  ->  (
( `  W )  e.  NN  <->  W  =/=  (/) ) )
3533, 34syl 14 . . . . . . . . . 10  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  (
( `  W )  e.  NN  <->  W  =/=  (/) ) )
3635biimpar 297 . . . . . . . . 9  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( `  W )  e.  NN )
3736nnzd 9466 . . . . . . . 8  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( `  W )  e.  ZZ )
38 fzoval 10242 . . . . . . . 8  |-  ( ( `  W )  e.  ZZ  ->  ( 0..^ ( `  W
) )  =  ( 0 ... ( ( `  W )  -  1 ) ) )
3937, 38syl 14 . . . . . . 7  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( 0..^ ( `  W
) )  =  ( 0 ... ( ( `  W )  -  1 ) ) )
4039feq2d 5398 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( W : ( 0..^ ( `  W
) ) --> B  <->  W :
( 0 ... (
( `  W )  - 
1 ) ) --> B ) )
4131, 40mpbid 147 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W : ( 0 ... ( ( `  W
)  -  1 ) ) --> B )
4241ffvelcdmda 5700 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( `  W )  - 
1 ) ) )  ->  ( W `  x )  e.  B
)
43 nnm1nn0 9309 . . . . . 6  |-  ( ( `  W )  e.  NN  ->  ( ( `  W
)  -  1 )  e.  NN0 )
4436, 43syl 14 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( ( `  W
)  -  1 )  e.  NN0 )
45 nn0uz 9655 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
4644, 45eleqtrdi 2289 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( ( `  W
)  -  1 )  e.  ( ZZ>= `  0
) )
47 eqid 2196 . . . . . . 7  |-  ( +g  `  N )  =  ( +g  `  N )
4825, 26, 47mhmlin 13171 . . . . . 6  |-  ( ( H  e.  ( M MndHom  N )  /\  x  e.  B  /\  y  e.  B )  ->  ( H `  ( x
( +g  `  M ) y ) )  =  ( ( H `  x ) ( +g  `  N ) ( H `
 y ) ) )
49483expb 1206 . . . . 5  |-  ( ( H  e.  ( M MndHom  N )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( H `  ( x ( +g  `  M ) y ) )  =  ( ( H `  x ) ( +g  `  N
) ( H `  y ) ) )
5049ad4ant14 514 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( H `  (
x ( +g  `  M
) y ) )  =  ( ( H `
 x ) ( +g  `  N ) ( H `  y
) ) )
5141ffnd 5411 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W  Fn  ( 0 ... ( ( `  W
)  -  1 ) ) )
52 fvco2 5633 . . . . . 6  |-  ( ( W  Fn  ( 0 ... ( ( `  W
)  -  1 ) )  /\  x  e.  ( 0 ... (
( `  W )  - 
1 ) ) )  ->  ( ( H  o.  W ) `  x )  =  ( H `  ( W `
 x ) ) )
5351, 52sylan 283 . . . . 5  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( `  W )  - 
1 ) ) )  ->  ( ( H  o.  W ) `  x )  =  ( H `  ( W `
 x ) ) )
5453eqcomd 2202 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( `  W )  - 
1 ) ) )  ->  ( H `  ( W `  x ) )  =  ( ( H  o.  W ) `
 x ) )
55 simplr 528 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W  e. Word  B )
56 coexg 5215 . . . . 5  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H  o.  W )  e.  _V )
5756adantr 276 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H  o.  W
)  e.  _V )
58 plusgslid 12817 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
5958slotex 12732 . . . . . 6  |-  ( M  e.  Mnd  ->  ( +g  `  M )  e. 
_V )
607, 59syl 14 . . . . 5  |-  ( H  e.  ( M MndHom  N
)  ->  ( +g  `  M )  e.  _V )
6160ad2antrr 488 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( +g  `  M )  e.  _V )
6258slotex 12732 . . . . . 6  |-  ( N  e.  Mnd  ->  ( +g  `  N )  e. 
_V )
6318, 62syl 14 . . . . 5  |-  ( H  e.  ( M MndHom  N
)  ->  ( +g  `  N )  e.  _V )
6463ad2antrr 488 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( +g  `  N )  e.  _V )
6529, 42, 46, 50, 54, 55, 57, 61, 64seqhomog 10641 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  (  seq 0 ( ( +g  `  M ) ,  W
) `  ( ( `  W )  -  1 ) ) )  =  (  seq 0 ( ( +g  `  N
) ,  ( H  o.  W ) ) `
 ( ( `  W
)  -  1 ) ) )
6625, 26, 24, 46, 41gsumval2 13101 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( M  gsumg  W )  =  (  seq 0 ( ( +g  `  M ) ,  W ) `  ( ( `  W )  -  1 ) ) )
6766fveq2d 5565 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( H `  (  seq 0 ( ( +g  `  M ) ,  W
) `  ( ( `  W )  -  1 ) ) ) )
68 eqid 2196 . . . 4  |-  ( Base `  N )  =  (
Base `  N )
6918ad2antrr 488 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  N  e.  Mnd )
7025, 68mhmf 13169 . . . . . 6  |-  ( H  e.  ( M MndHom  N
)  ->  H : B
--> ( Base `  N
) )
7170ad2antrr 488 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  H : B --> ( Base `  N ) )
72 fco 5426 . . . . 5  |-  ( ( H : B --> ( Base `  N )  /\  W : ( 0 ... ( ( `  W
)  -  1 ) ) --> B )  -> 
( H  o.  W
) : ( 0 ... ( ( `  W
)  -  1 ) ) --> ( Base `  N
) )
7371, 41, 72syl2anc 411 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H  o.  W
) : ( 0 ... ( ( `  W
)  -  1 ) ) --> ( Base `  N
) )
7468, 47, 69, 46, 73gsumval2 13101 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( N  gsumg  ( H  o.  W
) )  =  (  seq 0 ( ( +g  `  N ) ,  ( H  o.  W ) ) `  ( ( `  W )  -  1 ) ) )
7565, 67, 743eqtr4d 2239 . 2  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
76 fin0or 6956 . . . 4  |-  ( W  e.  Fin  ->  ( W  =  (/)  \/  E. j  j  e.  W
) )
77 n0r 3465 . . . . 5  |-  ( E. j  j  e.  W  ->  W  =/=  (/) )
7877orim2i 762 . . . 4  |-  ( ( W  =  (/)  \/  E. j  j  e.  W
)  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
7976, 78syl 14 . . 3  |-  ( W  e.  Fin  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
8033, 79syl 14 . 2  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
8123, 75, 80mpjaodan 799 1  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   E.wex 1506    e. wcel 2167    =/= wne 2367   _Vcvv 2763   (/)c0 3451    o. ccom 4668    Fn wfn 5254   -->wf 5255   ` cfv 5259  (class class class)co 5925   Fincfn 6808   0cc0 7898   1c1 7899    - cmin 8216   NNcn 9009   NN0cn0 9268   ZZcz 9345   ZZ>=cuz 9620   ...cfz 10102  ..^cfzo 10236    seqcseq 10558  ♯chash 10886  Word cword 10954   Basecbs 12705   +g cplusg 12782   0gc0g 12960    gsumg cgsu 12961   Mndcmnd 13120   MndHom cmhm 13161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-map 6718  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-2 9068  df-n0 9269  df-z 9346  df-uz 9621  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-ihash 10887  df-word 10955  df-ndx 12708  df-slot 12709  df-base 12711  df-plusg 12795  df-0g 12962  df-igsum 12963  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-mhm 13163
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator