ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumwmhm Unicode version

Theorem gsumwmhm 13400
Description: Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypothesis
Ref Expression
gsumwmhm.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
gsumwmhm  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )

Proof of Theorem gsumwmhm
Dummy variables  x  y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2206 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
2 eqid 2206 . . . . 5  |-  ( 0g
`  N )  =  ( 0g `  N
)
31, 2mhm0 13370 . . . 4  |-  ( H  e.  ( M MndHom  N
)  ->  ( H `  ( 0g `  M
) )  =  ( 0g `  N ) )
43ad2antrr 488 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( H `  ( 0g `  M ) )  =  ( 0g `  N ) )
5 oveq2 5964 . . . . . 6  |-  ( W  =  (/)  ->  ( M 
gsumg  W )  =  ( M  gsumg  (/) ) )
65adantl 277 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( M  gsumg  W )  =  ( M  gsumg  (/) ) )
7 mhmrcl1 13365 . . . . . . 7  |-  ( H  e.  ( M MndHom  N
)  ->  M  e.  Mnd )
87ad2antrr 488 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  ->  M  e.  Mnd )
91gsum0g 13298 . . . . . 6  |-  ( M  e.  Mnd  ->  ( M  gsumg  (/) )  =  ( 0g `  M ) )
108, 9syl 14 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( M  gsumg  (/) )  =  ( 0g `  M ) )
116, 10eqtrd 2239 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( M  gsumg  W )  =  ( 0g `  M ) )
1211fveq2d 5592 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( H `  ( 0g `  M ) ) )
13 coeq2 4843 . . . . . . 7  |-  ( W  =  (/)  ->  ( H  o.  W )  =  ( H  o.  (/) ) )
14 co02 5204 . . . . . . 7  |-  ( H  o.  (/) )  =  (/)
1513, 14eqtrdi 2255 . . . . . 6  |-  ( W  =  (/)  ->  ( H  o.  W )  =  (/) )
1615oveq2d 5972 . . . . 5  |-  ( W  =  (/)  ->  ( N 
gsumg  ( H  o.  W
) )  =  ( N  gsumg  (/) ) )
1716adantl 277 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( N  gsumg  ( H  o.  W
) )  =  ( N  gsumg  (/) ) )
18 mhmrcl2 13366 . . . . . 6  |-  ( H  e.  ( M MndHom  N
)  ->  N  e.  Mnd )
1918ad2antrr 488 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  ->  N  e.  Mnd )
202gsum0g 13298 . . . . 5  |-  ( N  e.  Mnd  ->  ( N  gsumg  (/) )  =  ( 0g `  N ) )
2119, 20syl 14 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( N  gsumg  (/) )  =  ( 0g `  N ) )
2217, 21eqtrd 2239 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( N  gsumg  ( H  o.  W
) )  =  ( 0g `  N ) )
234, 12, 223eqtr4d 2249 . 2  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
247ad2antrr 488 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  M  e.  Mnd )
25 gsumwmhm.b . . . . . . 7  |-  B  =  ( Base `  M
)
26 eqid 2206 . . . . . . 7  |-  ( +g  `  M )  =  ( +g  `  M )
2725, 26mndcl 13325 . . . . . 6  |-  ( ( M  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  M ) y )  e.  B )
28273expb 1207 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  M
) y )  e.  B )
2924, 28sylan 283 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  M ) y )  e.  B )
30 wrdf 11017 . . . . . . 7  |-  ( W  e. Word  B  ->  W : ( 0..^ ( `  W ) ) --> B )
3130ad2antlr 489 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W : ( 0..^ ( `  W ) ) --> B )
32 wrdfin 11030 . . . . . . . . . . . 12  |-  ( W  e. Word  B  ->  W  e.  Fin )
3332adantl 277 . . . . . . . . . . 11  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  W  e.  Fin )
34 hashnncl 10957 . . . . . . . . . . 11  |-  ( W  e.  Fin  ->  (
( `  W )  e.  NN  <->  W  =/=  (/) ) )
3533, 34syl 14 . . . . . . . . . 10  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  (
( `  W )  e.  NN  <->  W  =/=  (/) ) )
3635biimpar 297 . . . . . . . . 9  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( `  W )  e.  NN )
3736nnzd 9509 . . . . . . . 8  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( `  W )  e.  ZZ )
38 fzoval 10285 . . . . . . . 8  |-  ( ( `  W )  e.  ZZ  ->  ( 0..^ ( `  W
) )  =  ( 0 ... ( ( `  W )  -  1 ) ) )
3937, 38syl 14 . . . . . . 7  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( 0..^ ( `  W
) )  =  ( 0 ... ( ( `  W )  -  1 ) ) )
4039feq2d 5422 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( W : ( 0..^ ( `  W
) ) --> B  <->  W :
( 0 ... (
( `  W )  - 
1 ) ) --> B ) )
4131, 40mpbid 147 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W : ( 0 ... ( ( `  W
)  -  1 ) ) --> B )
4241ffvelcdmda 5727 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( `  W )  - 
1 ) ) )  ->  ( W `  x )  e.  B
)
43 nnm1nn0 9351 . . . . . 6  |-  ( ( `  W )  e.  NN  ->  ( ( `  W
)  -  1 )  e.  NN0 )
4436, 43syl 14 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( ( `  W
)  -  1 )  e.  NN0 )
45 nn0uz 9698 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
4644, 45eleqtrdi 2299 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( ( `  W
)  -  1 )  e.  ( ZZ>= `  0
) )
47 eqid 2206 . . . . . . 7  |-  ( +g  `  N )  =  ( +g  `  N )
4825, 26, 47mhmlin 13369 . . . . . 6  |-  ( ( H  e.  ( M MndHom  N )  /\  x  e.  B  /\  y  e.  B )  ->  ( H `  ( x
( +g  `  M ) y ) )  =  ( ( H `  x ) ( +g  `  N ) ( H `
 y ) ) )
49483expb 1207 . . . . 5  |-  ( ( H  e.  ( M MndHom  N )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( H `  ( x ( +g  `  M ) y ) )  =  ( ( H `  x ) ( +g  `  N
) ( H `  y ) ) )
5049ad4ant14 514 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( H `  (
x ( +g  `  M
) y ) )  =  ( ( H `
 x ) ( +g  `  N ) ( H `  y
) ) )
5141ffnd 5435 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W  Fn  ( 0 ... ( ( `  W
)  -  1 ) ) )
52 fvco2 5660 . . . . . 6  |-  ( ( W  Fn  ( 0 ... ( ( `  W
)  -  1 ) )  /\  x  e.  ( 0 ... (
( `  W )  - 
1 ) ) )  ->  ( ( H  o.  W ) `  x )  =  ( H `  ( W `
 x ) ) )
5351, 52sylan 283 . . . . 5  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( `  W )  - 
1 ) ) )  ->  ( ( H  o.  W ) `  x )  =  ( H `  ( W `
 x ) ) )
5453eqcomd 2212 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( `  W )  - 
1 ) ) )  ->  ( H `  ( W `  x ) )  =  ( ( H  o.  W ) `
 x ) )
55 simplr 528 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W  e. Word  B )
56 coexg 5235 . . . . 5  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H  o.  W )  e.  _V )
5756adantr 276 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H  o.  W
)  e.  _V )
58 plusgslid 13014 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
5958slotex 12929 . . . . . 6  |-  ( M  e.  Mnd  ->  ( +g  `  M )  e. 
_V )
607, 59syl 14 . . . . 5  |-  ( H  e.  ( M MndHom  N
)  ->  ( +g  `  M )  e.  _V )
6160ad2antrr 488 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( +g  `  M )  e.  _V )
6258slotex 12929 . . . . . 6  |-  ( N  e.  Mnd  ->  ( +g  `  N )  e. 
_V )
6318, 62syl 14 . . . . 5  |-  ( H  e.  ( M MndHom  N
)  ->  ( +g  `  N )  e.  _V )
6463ad2antrr 488 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( +g  `  N )  e.  _V )
6529, 42, 46, 50, 54, 55, 57, 61, 64seqhomog 10692 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  (  seq 0 ( ( +g  `  M ) ,  W
) `  ( ( `  W )  -  1 ) ) )  =  (  seq 0 ( ( +g  `  N
) ,  ( H  o.  W ) ) `
 ( ( `  W
)  -  1 ) ) )
6625, 26, 24, 46, 41gsumval2 13299 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( M  gsumg  W )  =  (  seq 0 ( ( +g  `  M ) ,  W ) `  ( ( `  W )  -  1 ) ) )
6766fveq2d 5592 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( H `  (  seq 0 ( ( +g  `  M ) ,  W
) `  ( ( `  W )  -  1 ) ) ) )
68 eqid 2206 . . . 4  |-  ( Base `  N )  =  (
Base `  N )
6918ad2antrr 488 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  N  e.  Mnd )
7025, 68mhmf 13367 . . . . . 6  |-  ( H  e.  ( M MndHom  N
)  ->  H : B
--> ( Base `  N
) )
7170ad2antrr 488 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  H : B --> ( Base `  N ) )
72 fco 5450 . . . . 5  |-  ( ( H : B --> ( Base `  N )  /\  W : ( 0 ... ( ( `  W
)  -  1 ) ) --> B )  -> 
( H  o.  W
) : ( 0 ... ( ( `  W
)  -  1 ) ) --> ( Base `  N
) )
7371, 41, 72syl2anc 411 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H  o.  W
) : ( 0 ... ( ( `  W
)  -  1 ) ) --> ( Base `  N
) )
7468, 47, 69, 46, 73gsumval2 13299 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( N  gsumg  ( H  o.  W
) )  =  (  seq 0 ( ( +g  `  N ) ,  ( H  o.  W ) ) `  ( ( `  W )  -  1 ) ) )
7565, 67, 743eqtr4d 2249 . 2  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
76 fin0or 6997 . . . 4  |-  ( W  e.  Fin  ->  ( W  =  (/)  \/  E. j  j  e.  W
) )
77 n0r 3478 . . . . 5  |-  ( E. j  j  e.  W  ->  W  =/=  (/) )
7877orim2i 763 . . . 4  |-  ( ( W  =  (/)  \/  E. j  j  e.  W
)  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
7976, 78syl 14 . . 3  |-  ( W  e.  Fin  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
8033, 79syl 14 . 2  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
8123, 75, 80mpjaodan 800 1  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2177    =/= wne 2377   _Vcvv 2773   (/)c0 3464    o. ccom 4686    Fn wfn 5274   -->wf 5275   ` cfv 5279  (class class class)co 5956   Fincfn 6839   0cc0 7940   1c1 7941    - cmin 8258   NNcn 9051   NN0cn0 9310   ZZcz 9387   ZZ>=cuz 9663   ...cfz 10145  ..^cfzo 10279    seqcseq 10609  ♯chash 10937  Word cword 11011   Basecbs 12902   +g cplusg 12979   0gc0g 13158    gsumg cgsu 13159   Mndcmnd 13318   MndHom cmhm 13359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-1o 6514  df-er 6632  df-map 6749  df-en 6840  df-dom 6841  df-fin 6842  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-inn 9052  df-2 9110  df-n0 9311  df-z 9388  df-uz 9664  df-fz 10146  df-fzo 10280  df-seqfrec 10610  df-ihash 10938  df-word 11012  df-ndx 12905  df-slot 12906  df-base 12908  df-plusg 12992  df-0g 13160  df-igsum 13161  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-mhm 13361
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator