ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumwmhm Unicode version

Theorem gsumwmhm 13106
Description: Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypothesis
Ref Expression
gsumwmhm.b  |-  B  =  ( Base `  M
)
Assertion
Ref Expression
gsumwmhm  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )

Proof of Theorem gsumwmhm
Dummy variables  x  y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . 5  |-  ( 0g
`  M )  =  ( 0g `  M
)
2 eqid 2196 . . . . 5  |-  ( 0g
`  N )  =  ( 0g `  N
)
31, 2mhm0 13076 . . . 4  |-  ( H  e.  ( M MndHom  N
)  ->  ( H `  ( 0g `  M
) )  =  ( 0g `  N ) )
43ad2antrr 488 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( H `  ( 0g `  M ) )  =  ( 0g `  N ) )
5 oveq2 5930 . . . . . 6  |-  ( W  =  (/)  ->  ( M 
gsumg  W )  =  ( M  gsumg  (/) ) )
65adantl 277 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( M  gsumg  W )  =  ( M  gsumg  (/) ) )
7 mhmrcl1 13071 . . . . . . 7  |-  ( H  e.  ( M MndHom  N
)  ->  M  e.  Mnd )
87ad2antrr 488 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  ->  M  e.  Mnd )
91gsum0g 13015 . . . . . 6  |-  ( M  e.  Mnd  ->  ( M  gsumg  (/) )  =  ( 0g `  M ) )
108, 9syl 14 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( M  gsumg  (/) )  =  ( 0g `  M ) )
116, 10eqtrd 2229 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( M  gsumg  W )  =  ( 0g `  M ) )
1211fveq2d 5562 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( H `  ( 0g `  M ) ) )
13 coeq2 4824 . . . . . . 7  |-  ( W  =  (/)  ->  ( H  o.  W )  =  ( H  o.  (/) ) )
14 co02 5183 . . . . . . 7  |-  ( H  o.  (/) )  =  (/)
1513, 14eqtrdi 2245 . . . . . 6  |-  ( W  =  (/)  ->  ( H  o.  W )  =  (/) )
1615oveq2d 5938 . . . . 5  |-  ( W  =  (/)  ->  ( N 
gsumg  ( H  o.  W
) )  =  ( N  gsumg  (/) ) )
1716adantl 277 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( N  gsumg  ( H  o.  W
) )  =  ( N  gsumg  (/) ) )
18 mhmrcl2 13072 . . . . . 6  |-  ( H  e.  ( M MndHom  N
)  ->  N  e.  Mnd )
1918ad2antrr 488 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  ->  N  e.  Mnd )
202gsum0g 13015 . . . . 5  |-  ( N  e.  Mnd  ->  ( N  gsumg  (/) )  =  ( 0g `  N ) )
2119, 20syl 14 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( N  gsumg  (/) )  =  ( 0g `  N ) )
2217, 21eqtrd 2229 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( N  gsumg  ( H  o.  W
) )  =  ( 0g `  N ) )
234, 12, 223eqtr4d 2239 . 2  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
247ad2antrr 488 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  M  e.  Mnd )
25 gsumwmhm.b . . . . . . 7  |-  B  =  ( Base `  M
)
26 eqid 2196 . . . . . . 7  |-  ( +g  `  M )  =  ( +g  `  M )
2725, 26mndcl 13040 . . . . . 6  |-  ( ( M  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x ( +g  `  M ) y )  e.  B )
28273expb 1206 . . . . 5  |-  ( ( M  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  M
) y )  e.  B )
2924, 28sylan 283 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  M ) y )  e.  B )
30 wrdf 10926 . . . . . . 7  |-  ( W  e. Word  B  ->  W : ( 0..^ ( `  W ) ) --> B )
3130ad2antlr 489 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W : ( 0..^ ( `  W ) ) --> B )
32 wrdfin 10939 . . . . . . . . . . . 12  |-  ( W  e. Word  B  ->  W  e.  Fin )
3332adantl 277 . . . . . . . . . . 11  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  W  e.  Fin )
34 hashnncl 10872 . . . . . . . . . . 11  |-  ( W  e.  Fin  ->  (
( `  W )  e.  NN  <->  W  =/=  (/) ) )
3533, 34syl 14 . . . . . . . . . 10  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  (
( `  W )  e.  NN  <->  W  =/=  (/) ) )
3635biimpar 297 . . . . . . . . 9  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( `  W )  e.  NN )
3736nnzd 9444 . . . . . . . 8  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( `  W )  e.  ZZ )
38 fzoval 10220 . . . . . . . 8  |-  ( ( `  W )  e.  ZZ  ->  ( 0..^ ( `  W
) )  =  ( 0 ... ( ( `  W )  -  1 ) ) )
3937, 38syl 14 . . . . . . 7  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( 0..^ ( `  W
) )  =  ( 0 ... ( ( `  W )  -  1 ) ) )
4039feq2d 5395 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( W : ( 0..^ ( `  W
) ) --> B  <->  W :
( 0 ... (
( `  W )  - 
1 ) ) --> B ) )
4131, 40mpbid 147 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W : ( 0 ... ( ( `  W
)  -  1 ) ) --> B )
4241ffvelcdmda 5697 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( `  W )  - 
1 ) ) )  ->  ( W `  x )  e.  B
)
43 nnm1nn0 9287 . . . . . 6  |-  ( ( `  W )  e.  NN  ->  ( ( `  W
)  -  1 )  e.  NN0 )
4436, 43syl 14 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( ( `  W
)  -  1 )  e.  NN0 )
45 nn0uz 9633 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
4644, 45eleqtrdi 2289 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( ( `  W
)  -  1 )  e.  ( ZZ>= `  0
) )
47 eqid 2196 . . . . . . 7  |-  ( +g  `  N )  =  ( +g  `  N )
4825, 26, 47mhmlin 13075 . . . . . 6  |-  ( ( H  e.  ( M MndHom  N )  /\  x  e.  B  /\  y  e.  B )  ->  ( H `  ( x
( +g  `  M ) y ) )  =  ( ( H `  x ) ( +g  `  N ) ( H `
 y ) ) )
49483expb 1206 . . . . 5  |-  ( ( H  e.  ( M MndHom  N )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( H `  ( x ( +g  `  M ) y ) )  =  ( ( H `  x ) ( +g  `  N
) ( H `  y ) ) )
5049ad4ant14 514 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( H `  (
x ( +g  `  M
) y ) )  =  ( ( H `
 x ) ( +g  `  N ) ( H `  y
) ) )
5141ffnd 5408 . . . . . 6  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W  Fn  ( 0 ... ( ( `  W
)  -  1 ) ) )
52 fvco2 5630 . . . . . 6  |-  ( ( W  Fn  ( 0 ... ( ( `  W
)  -  1 ) )  /\  x  e.  ( 0 ... (
( `  W )  - 
1 ) ) )  ->  ( ( H  o.  W ) `  x )  =  ( H `  ( W `
 x ) ) )
5351, 52sylan 283 . . . . 5  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( `  W )  - 
1 ) ) )  ->  ( ( H  o.  W ) `  x )  =  ( H `  ( W `
 x ) ) )
5453eqcomd 2202 . . . 4  |-  ( ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B
)  /\  W  =/=  (/) )  /\  x  e.  ( 0 ... (
( `  W )  - 
1 ) ) )  ->  ( H `  ( W `  x ) )  =  ( ( H  o.  W ) `
 x ) )
55 simplr 528 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  W  e. Word  B )
56 coexg 5214 . . . . 5  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H  o.  W )  e.  _V )
5756adantr 276 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H  o.  W
)  e.  _V )
58 plusgslid 12766 . . . . . . 7  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
5958slotex 12681 . . . . . 6  |-  ( M  e.  Mnd  ->  ( +g  `  M )  e. 
_V )
607, 59syl 14 . . . . 5  |-  ( H  e.  ( M MndHom  N
)  ->  ( +g  `  M )  e.  _V )
6160ad2antrr 488 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( +g  `  M )  e.  _V )
6258slotex 12681 . . . . . 6  |-  ( N  e.  Mnd  ->  ( +g  `  N )  e. 
_V )
6318, 62syl 14 . . . . 5  |-  ( H  e.  ( M MndHom  N
)  ->  ( +g  `  N )  e.  _V )
6463ad2antrr 488 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( +g  `  N )  e.  _V )
6529, 42, 46, 50, 54, 55, 57, 61, 64seqhomog 10607 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  (  seq 0 ( ( +g  `  M ) ,  W
) `  ( ( `  W )  -  1 ) ) )  =  (  seq 0 ( ( +g  `  N
) ,  ( H  o.  W ) ) `
 ( ( `  W
)  -  1 ) ) )
6625, 26, 24, 46, 41gsumval2 13016 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( M  gsumg  W )  =  (  seq 0 ( ( +g  `  M ) ,  W ) `  ( ( `  W )  -  1 ) ) )
6766fveq2d 5562 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( H `  (  seq 0 ( ( +g  `  M ) ,  W
) `  ( ( `  W )  -  1 ) ) ) )
68 eqid 2196 . . . 4  |-  ( Base `  N )  =  (
Base `  N )
6918ad2antrr 488 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  N  e.  Mnd )
7025, 68mhmf 13073 . . . . . 6  |-  ( H  e.  ( M MndHom  N
)  ->  H : B
--> ( Base `  N
) )
7170ad2antrr 488 . . . . 5  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  ->  H : B --> ( Base `  N ) )
72 fco 5423 . . . . 5  |-  ( ( H : B --> ( Base `  N )  /\  W : ( 0 ... ( ( `  W
)  -  1 ) ) --> B )  -> 
( H  o.  W
) : ( 0 ... ( ( `  W
)  -  1 ) ) --> ( Base `  N
) )
7371, 41, 72syl2anc 411 . . . 4  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H  o.  W
) : ( 0 ... ( ( `  W
)  -  1 ) ) --> ( Base `  N
) )
7468, 47, 69, 46, 73gsumval2 13016 . . 3  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( N  gsumg  ( H  o.  W
) )  =  (  seq 0 ( ( +g  `  N ) ,  ( H  o.  W ) ) `  ( ( `  W )  -  1 ) ) )
7565, 67, 743eqtr4d 2239 . 2  |-  ( ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  /\  W  =/=  (/) )  -> 
( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
76 fin0or 6947 . . . 4  |-  ( W  e.  Fin  ->  ( W  =  (/)  \/  E. j  j  e.  W
) )
77 n0r 3464 . . . . 5  |-  ( E. j  j  e.  W  ->  W  =/=  (/) )
7877orim2i 762 . . . 4  |-  ( ( W  =  (/)  \/  E. j  j  e.  W
)  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
7976, 78syl 14 . . 3  |-  ( W  e.  Fin  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
8033, 79syl 14 . 2  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( W  =  (/)  \/  W  =/=  (/) ) )
8123, 75, 80mpjaodan 799 1  |-  ( ( H  e.  ( M MndHom  N )  /\  W  e. Word  B )  ->  ( H `  ( M  gsumg  W ) )  =  ( N  gsumg  ( H  o.  W
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   E.wex 1506    e. wcel 2167    =/= wne 2367   _Vcvv 2763   (/)c0 3450    o. ccom 4667    Fn wfn 5253   -->wf 5254   ` cfv 5258  (class class class)co 5922   Fincfn 6799   0cc0 7877   1c1 7878    - cmin 8195   NNcn 8987   NN0cn0 9246   ZZcz 9323   ZZ>=cuz 9598   ...cfz 10080  ..^cfzo 10214    seqcseq 10524  ♯chash 10852  Word cword 10920   Basecbs 12654   +g cplusg 12731   0gc0g 12903    gsumg cgsu 12904   Mndcmnd 13033   MndHom cmhm 13065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-addass 7979  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-0id 7985  ax-rnegex 7986  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-map 6709  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-inn 8988  df-2 9046  df-n0 9247  df-z 9324  df-uz 9599  df-fz 10081  df-fzo 10215  df-seqfrec 10525  df-ihash 10853  df-word 10921  df-ndx 12657  df-slot 12658  df-base 12660  df-plusg 12744  df-0g 12905  df-igsum 12906  df-mgm 12975  df-sgrp 13021  df-mnd 13034  df-mhm 13067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator