ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddii Unicode version

Theorem adddii 8117
Description: Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1  |-  A  e.  CC
axi.2  |-  B  e.  CC
axi.3  |-  C  e.  CC
Assertion
Ref Expression
adddii  |-  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) )

Proof of Theorem adddii
StepHypRef Expression
1 axi.1 . 2  |-  A  e.  CC
2 axi.2 . 2  |-  B  e.  CC
3 axi.3 . 2  |-  C  e.  CC
4 adddi 8092 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
51, 2, 3, 4mp3an 1350 1  |-  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178  (class class class)co 5967   CCcc 7958    + caddc 7963    x. cmul 7965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-distr 8064
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  3t3e9  9229  numltc  9564  numsucc  9578  numma  9582  decmul10add  9607  4t3lem  9635  9t11e99  9668  decbin2  9679  binom2i  10830  3dec  10896  3dvds2dec  12292  decsplit  12867
  Copyright terms: Public domain W3C validator