ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decbin2 Unicode version

Theorem decbin2 9714
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
decbin.1  |-  A  e. 
NN0
Assertion
Ref Expression
decbin2  |-  ( ( 4  x.  A )  +  2 )  =  ( 2  x.  (
( 2  x.  A
)  +  1 ) )

Proof of Theorem decbin2
StepHypRef Expression
1 2t1e2 9260 . . 3  |-  ( 2  x.  1 )  =  2
21oveq2i 6011 . 2  |-  ( ( 2  x.  ( 2  x.  A ) )  +  ( 2  x.  1 ) )  =  ( ( 2  x.  ( 2  x.  A
) )  +  2 )
3 2cn 9177 . . 3  |-  2  e.  CC
4 decbin.1 . . . . 5  |-  A  e. 
NN0
54nn0cni 9377 . . . 4  |-  A  e.  CC
63, 5mulcli 8147 . . 3  |-  ( 2  x.  A )  e.  CC
7 ax-1cn 8088 . . 3  |-  1  e.  CC
83, 6, 7adddii 8152 . 2  |-  ( 2  x.  ( ( 2  x.  A )  +  1 ) )  =  ( ( 2  x.  ( 2  x.  A
) )  +  ( 2  x.  1 ) )
94decbin0 9713 . . 3  |-  ( 4  x.  A )  =  ( 2  x.  (
2  x.  A ) )
109oveq1i 6010 . 2  |-  ( ( 4  x.  A )  +  2 )  =  ( ( 2  x.  ( 2  x.  A
) )  +  2 )
112, 8, 103eqtr4ri 2261 1  |-  ( ( 4  x.  A )  +  2 )  =  ( 2  x.  (
( 2  x.  A
)  +  1 ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200  (class class class)co 6000   1c1 7996    + caddc 7998    x. cmul 8000   2c2 9157   4c4 9159   NN0cn0 9365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4201  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-1rid 8102  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366
This theorem is referenced by:  decbin3  9715
  Copyright terms: Public domain W3C validator