ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decbin2 Unicode version

Theorem decbin2 9614
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
decbin.1  |-  A  e. 
NN0
Assertion
Ref Expression
decbin2  |-  ( ( 4  x.  A )  +  2 )  =  ( 2  x.  (
( 2  x.  A
)  +  1 ) )

Proof of Theorem decbin2
StepHypRef Expression
1 2t1e2 9161 . . 3  |-  ( 2  x.  1 )  =  2
21oveq2i 5936 . 2  |-  ( ( 2  x.  ( 2  x.  A ) )  +  ( 2  x.  1 ) )  =  ( ( 2  x.  ( 2  x.  A
) )  +  2 )
3 2cn 9078 . . 3  |-  2  e.  CC
4 decbin.1 . . . . 5  |-  A  e. 
NN0
54nn0cni 9278 . . . 4  |-  A  e.  CC
63, 5mulcli 8048 . . 3  |-  ( 2  x.  A )  e.  CC
7 ax-1cn 7989 . . 3  |-  1  e.  CC
83, 6, 7adddii 8053 . 2  |-  ( 2  x.  ( ( 2  x.  A )  +  1 ) )  =  ( ( 2  x.  ( 2  x.  A
) )  +  ( 2  x.  1 ) )
94decbin0 9613 . . 3  |-  ( 4  x.  A )  =  ( 2  x.  (
2  x.  A ) )
109oveq1i 5935 . 2  |-  ( ( 4  x.  A )  +  2 )  =  ( ( 2  x.  ( 2  x.  A
) )  +  2 )
112, 8, 103eqtr4ri 2228 1  |-  ( ( 4  x.  A )  +  2 )  =  ( 2  x.  (
( 2  x.  A
)  +  1 ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167  (class class class)co 5925   1c1 7897    + caddc 7899    x. cmul 7901   2c2 9058   4c4 9060   NN0cn0 9266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4152  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-1rid 8003  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267
This theorem is referenced by:  decbin3  9615
  Copyright terms: Public domain W3C validator