| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decbin2 | Unicode version | ||
| Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| decbin.1 |
|
| Ref | Expression |
|---|---|
| decbin2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2t1e2 9260 |
. . 3
| |
| 2 | 1 | oveq2i 6011 |
. 2
|
| 3 | 2cn 9177 |
. . 3
| |
| 4 | decbin.1 |
. . . . 5
| |
| 5 | 4 | nn0cni 9377 |
. . . 4
|
| 6 | 3, 5 | mulcli 8147 |
. . 3
|
| 7 | ax-1cn 8088 |
. . 3
| |
| 8 | 3, 6, 7 | adddii 8152 |
. 2
|
| 9 | 4 | decbin0 9713 |
. . 3
|
| 10 | 9 | oveq1i 6010 |
. 2
|
| 11 | 2, 8, 10 | 3eqtr4ri 2261 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-1rid 8102 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 |
| This theorem is referenced by: decbin3 9715 |
| Copyright terms: Public domain | W3C validator |