| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decbin2 | Unicode version | ||
| Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| decbin.1 |
|
| Ref | Expression |
|---|---|
| decbin2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2t1e2 9210 |
. . 3
| |
| 2 | 1 | oveq2i 5968 |
. 2
|
| 3 | 2cn 9127 |
. . 3
| |
| 4 | decbin.1 |
. . . . 5
| |
| 5 | 4 | nn0cni 9327 |
. . . 4
|
| 6 | 3, 5 | mulcli 8097 |
. . 3
|
| 7 | ax-1cn 8038 |
. . 3
| |
| 8 | 3, 6, 7 | adddii 8102 |
. 2
|
| 9 | 4 | decbin0 9663 |
. . 3
|
| 10 | 9 | oveq1i 5967 |
. 2
|
| 11 | 2, 8, 10 | 3eqtr4ri 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4170 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-1rid 8052 ax-rnegex 8054 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 |
| This theorem is referenced by: decbin3 9665 |
| Copyright terms: Public domain | W3C validator |