ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decbin2 Unicode version

Theorem decbin2 9174
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
decbin.1  |-  A  e. 
NN0
Assertion
Ref Expression
decbin2  |-  ( ( 4  x.  A )  +  2 )  =  ( 2  x.  (
( 2  x.  A
)  +  1 ) )

Proof of Theorem decbin2
StepHypRef Expression
1 2t1e2 8725 . . 3  |-  ( 2  x.  1 )  =  2
21oveq2i 5717 . 2  |-  ( ( 2  x.  ( 2  x.  A ) )  +  ( 2  x.  1 ) )  =  ( ( 2  x.  ( 2  x.  A
) )  +  2 )
3 2cn 8649 . . 3  |-  2  e.  CC
4 decbin.1 . . . . 5  |-  A  e. 
NN0
54nn0cni 8841 . . . 4  |-  A  e.  CC
63, 5mulcli 7643 . . 3  |-  ( 2  x.  A )  e.  CC
7 ax-1cn 7588 . . 3  |-  1  e.  CC
83, 6, 7adddii 7648 . 2  |-  ( 2  x.  ( ( 2  x.  A )  +  1 ) )  =  ( ( 2  x.  ( 2  x.  A
) )  +  ( 2  x.  1 ) )
94decbin0 9173 . . 3  |-  ( 4  x.  A )  =  ( 2  x.  (
2  x.  A ) )
109oveq1i 5716 . 2  |-  ( ( 4  x.  A )  +  2 )  =  ( ( 2  x.  ( 2  x.  A
) )  +  2 )
112, 8, 103eqtr4ri 2131 1  |-  ( ( 4  x.  A )  +  2 )  =  ( 2  x.  (
( 2  x.  A
)  +  1 ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1299    e. wcel 1448  (class class class)co 5706   1c1 7501    + caddc 7503    x. cmul 7505   2c2 8629   4c4 8631   NN0cn0 8829
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-1rid 7602  ax-rnegex 7604  ax-cnre 7606
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-iota 5024  df-fv 5067  df-ov 5709  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830
This theorem is referenced by:  decbin3  9175
  Copyright terms: Public domain W3C validator