ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decbin2 Unicode version

Theorem decbin2 9497
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
decbin.1  |-  A  e. 
NN0
Assertion
Ref Expression
decbin2  |-  ( ( 4  x.  A )  +  2 )  =  ( 2  x.  (
( 2  x.  A
)  +  1 ) )

Proof of Theorem decbin2
StepHypRef Expression
1 2t1e2 9045 . . 3  |-  ( 2  x.  1 )  =  2
21oveq2i 5876 . 2  |-  ( ( 2  x.  ( 2  x.  A ) )  +  ( 2  x.  1 ) )  =  ( ( 2  x.  ( 2  x.  A
) )  +  2 )
3 2cn 8963 . . 3  |-  2  e.  CC
4 decbin.1 . . . . 5  |-  A  e. 
NN0
54nn0cni 9161 . . . 4  |-  A  e.  CC
63, 5mulcli 7937 . . 3  |-  ( 2  x.  A )  e.  CC
7 ax-1cn 7879 . . 3  |-  1  e.  CC
83, 6, 7adddii 7942 . 2  |-  ( 2  x.  ( ( 2  x.  A )  +  1 ) )  =  ( ( 2  x.  ( 2  x.  A
) )  +  ( 2  x.  1 ) )
94decbin0 9496 . . 3  |-  ( 4  x.  A )  =  ( 2  x.  (
2  x.  A ) )
109oveq1i 5875 . 2  |-  ( ( 4  x.  A )  +  2 )  =  ( ( 2  x.  ( 2  x.  A
) )  +  2 )
112, 8, 103eqtr4ri 2207 1  |-  ( ( 4  x.  A )  +  2 )  =  ( 2  x.  (
( 2  x.  A
)  +  1 ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2146  (class class class)co 5865   1c1 7787    + caddc 7789    x. cmul 7791   2c2 8943   4c4 8945   NN0cn0 9149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-sep 4116  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-1rid 7893  ax-rnegex 7895  ax-cnre 7897
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-iota 5170  df-fv 5216  df-ov 5868  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-n0 9150
This theorem is referenced by:  decbin3  9498
  Copyright terms: Public domain W3C validator