| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4t3lem | Unicode version | ||
| Description: Lemma for 4t3e12 9636 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 4t3lem.1 |
|
| 4t3lem.2 |
|
| 4t3lem.3 |
|
| 4t3lem.4 |
|
| 4t3lem.5 |
|
| Ref | Expression |
|---|---|
| 4t3lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4t3lem.3 |
. . 3
| |
| 2 | 1 | oveq2i 5978 |
. 2
|
| 3 | 4t3lem.1 |
. . . . . 6
| |
| 4 | 3 | nn0cni 9342 |
. . . . 5
|
| 5 | 4t3lem.2 |
. . . . . 6
| |
| 6 | 5 | nn0cni 9342 |
. . . . 5
|
| 7 | ax-1cn 8053 |
. . . . 5
| |
| 8 | 4, 6, 7 | adddii 8117 |
. . . 4
|
| 9 | 4t3lem.4 |
. . . . 5
| |
| 10 | 4 | mulridi 8109 |
. . . . 5
|
| 11 | 9, 10 | oveq12i 5979 |
. . . 4
|
| 12 | 8, 11 | eqtri 2228 |
. . 3
|
| 13 | 4t3lem.5 |
. . 3
| |
| 14 | 12, 13 | eqtri 2228 |
. 2
|
| 15 | 2, 14 | eqtri 2228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulcom 8061 ax-mulass 8063 ax-distr 8064 ax-1rid 8067 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 df-n0 9331 |
| This theorem is referenced by: 4t3e12 9636 4t4e16 9637 5t2e10 9638 5t3e15 9639 5t4e20 9640 5t5e25 9641 6t3e18 9643 6t4e24 9644 6t5e30 9645 6t6e36 9646 7t3e21 9648 7t4e28 9649 7t5e35 9650 7t6e42 9651 7t7e49 9652 8t3e24 9654 8t4e32 9655 8t5e40 9656 8t6e48 9657 8t7e56 9658 8t8e64 9659 9t3e27 9661 9t4e36 9662 9t5e45 9663 9t6e54 9664 9t7e63 9665 9t8e72 9666 9t9e81 9667 |
| Copyright terms: Public domain | W3C validator |