![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4t3lem | Unicode version |
Description: Lemma for 4t3e12 9548 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
4t3lem.1 |
![]() ![]() ![]() ![]() |
4t3lem.2 |
![]() ![]() ![]() ![]() |
4t3lem.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4t3lem.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4t3lem.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
4t3lem |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4t3lem.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | oveq2i 5930 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 4t3lem.1 |
. . . . . 6
![]() ![]() ![]() ![]() | |
4 | 3 | nn0cni 9255 |
. . . . 5
![]() ![]() ![]() ![]() |
5 | 4t3lem.2 |
. . . . . 6
![]() ![]() ![]() ![]() | |
6 | 5 | nn0cni 9255 |
. . . . 5
![]() ![]() ![]() ![]() |
7 | ax-1cn 7967 |
. . . . 5
![]() ![]() ![]() ![]() | |
8 | 4, 6, 7 | adddii 8031 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 4t3lem.4 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 4 | mulid1i 8023 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 9, 10 | oveq12i 5931 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 8, 11 | eqtri 2214 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 4t3lem.5 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 12, 13 | eqtri 2214 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 2, 14 | eqtri 2214 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulcom 7975 ax-mulass 7977 ax-distr 7978 ax-1rid 7981 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-inn 8985 df-n0 9244 |
This theorem is referenced by: 4t3e12 9548 4t4e16 9549 5t2e10 9550 5t3e15 9551 5t4e20 9552 5t5e25 9553 6t3e18 9555 6t4e24 9556 6t5e30 9557 6t6e36 9558 7t3e21 9560 7t4e28 9561 7t5e35 9562 7t6e42 9563 7t7e49 9564 8t3e24 9566 8t4e32 9567 8t5e40 9568 8t6e48 9569 8t7e56 9570 8t8e64 9571 9t3e27 9573 9t4e36 9574 9t5e45 9575 9t6e54 9576 9t7e63 9577 9t8e72 9578 9t9e81 9579 |
Copyright terms: Public domain | W3C validator |