| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4t3lem | Unicode version | ||
| Description: Lemma for 4t3e12 9601 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 4t3lem.1 |
|
| 4t3lem.2 |
|
| 4t3lem.3 |
|
| 4t3lem.4 |
|
| 4t3lem.5 |
|
| Ref | Expression |
|---|---|
| 4t3lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4t3lem.3 |
. . 3
| |
| 2 | 1 | oveq2i 5955 |
. 2
|
| 3 | 4t3lem.1 |
. . . . . 6
| |
| 4 | 3 | nn0cni 9307 |
. . . . 5
|
| 5 | 4t3lem.2 |
. . . . . 6
| |
| 6 | 5 | nn0cni 9307 |
. . . . 5
|
| 7 | ax-1cn 8018 |
. . . . 5
| |
| 8 | 4, 6, 7 | adddii 8082 |
. . . 4
|
| 9 | 4t3lem.4 |
. . . . 5
| |
| 10 | 4 | mulridi 8074 |
. . . . 5
|
| 11 | 9, 10 | oveq12i 5956 |
. . . 4
|
| 12 | 8, 11 | eqtri 2226 |
. . 3
|
| 13 | 4t3lem.5 |
. . 3
| |
| 14 | 12, 13 | eqtri 2226 |
. 2
|
| 15 | 2, 14 | eqtri 2226 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulcom 8026 ax-mulass 8028 ax-distr 8029 ax-1rid 8032 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-inn 9037 df-n0 9296 |
| This theorem is referenced by: 4t3e12 9601 4t4e16 9602 5t2e10 9603 5t3e15 9604 5t4e20 9605 5t5e25 9606 6t3e18 9608 6t4e24 9609 6t5e30 9610 6t6e36 9611 7t3e21 9613 7t4e28 9614 7t5e35 9615 7t6e42 9616 7t7e49 9617 8t3e24 9619 8t4e32 9620 8t5e40 9621 8t6e48 9622 8t7e56 9623 8t8e64 9624 9t3e27 9626 9t4e36 9627 9t5e45 9628 9t6e54 9629 9t7e63 9630 9t8e72 9631 9t9e81 9632 |
| Copyright terms: Public domain | W3C validator |