| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4t3lem | Unicode version | ||
| Description: Lemma for 4t3e12 9554 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 4t3lem.1 |
|
| 4t3lem.2 |
|
| 4t3lem.3 |
|
| 4t3lem.4 |
|
| 4t3lem.5 |
|
| Ref | Expression |
|---|---|
| 4t3lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4t3lem.3 |
. . 3
| |
| 2 | 1 | oveq2i 5933 |
. 2
|
| 3 | 4t3lem.1 |
. . . . . 6
| |
| 4 | 3 | nn0cni 9261 |
. . . . 5
|
| 5 | 4t3lem.2 |
. . . . . 6
| |
| 6 | 5 | nn0cni 9261 |
. . . . 5
|
| 7 | ax-1cn 7972 |
. . . . 5
| |
| 8 | 4, 6, 7 | adddii 8036 |
. . . 4
|
| 9 | 4t3lem.4 |
. . . . 5
| |
| 10 | 4 | mulridi 8028 |
. . . . 5
|
| 11 | 9, 10 | oveq12i 5934 |
. . . 4
|
| 12 | 8, 11 | eqtri 2217 |
. . 3
|
| 13 | 4t3lem.5 |
. . 3
| |
| 14 | 12, 13 | eqtri 2217 |
. 2
|
| 15 | 2, 14 | eqtri 2217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulcom 7980 ax-mulass 7982 ax-distr 7983 ax-1rid 7986 ax-rnegex 7988 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 df-n0 9250 |
| This theorem is referenced by: 4t3e12 9554 4t4e16 9555 5t2e10 9556 5t3e15 9557 5t4e20 9558 5t5e25 9559 6t3e18 9561 6t4e24 9562 6t5e30 9563 6t6e36 9564 7t3e21 9566 7t4e28 9567 7t5e35 9568 7t6e42 9569 7t7e49 9570 8t3e24 9572 8t4e32 9573 8t5e40 9574 8t6e48 9575 8t7e56 9576 8t8e64 9577 9t3e27 9579 9t4e36 9580 9t5e45 9581 9t6e54 9582 9t7e63 9583 9t8e72 9584 9t9e81 9585 |
| Copyright terms: Public domain | W3C validator |