| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4t3lem | Unicode version | ||
| Description: Lemma for 4t3e12 9675 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 4t3lem.1 |
|
| 4t3lem.2 |
|
| 4t3lem.3 |
|
| 4t3lem.4 |
|
| 4t3lem.5 |
|
| Ref | Expression |
|---|---|
| 4t3lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4t3lem.3 |
. . 3
| |
| 2 | 1 | oveq2i 6012 |
. 2
|
| 3 | 4t3lem.1 |
. . . . . 6
| |
| 4 | 3 | nn0cni 9381 |
. . . . 5
|
| 5 | 4t3lem.2 |
. . . . . 6
| |
| 6 | 5 | nn0cni 9381 |
. . . . 5
|
| 7 | ax-1cn 8092 |
. . . . 5
| |
| 8 | 4, 6, 7 | adddii 8156 |
. . . 4
|
| 9 | 4t3lem.4 |
. . . . 5
| |
| 10 | 4 | mulridi 8148 |
. . . . 5
|
| 11 | 9, 10 | oveq12i 6013 |
. . . 4
|
| 12 | 8, 11 | eqtri 2250 |
. . 3
|
| 13 | 4t3lem.5 |
. . 3
| |
| 14 | 12, 13 | eqtri 2250 |
. 2
|
| 15 | 2, 14 | eqtri 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulcom 8100 ax-mulass 8102 ax-distr 8103 ax-1rid 8106 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-inn 9111 df-n0 9370 |
| This theorem is referenced by: 4t3e12 9675 4t4e16 9676 5t2e10 9677 5t3e15 9678 5t4e20 9679 5t5e25 9680 6t3e18 9682 6t4e24 9683 6t5e30 9684 6t6e36 9685 7t3e21 9687 7t4e28 9688 7t5e35 9689 7t6e42 9690 7t7e49 9691 8t3e24 9693 8t4e32 9694 8t5e40 9695 8t6e48 9696 8t7e56 9697 8t8e64 9698 9t3e27 9700 9t4e36 9701 9t5e45 9702 9t6e54 9703 9t7e63 9704 9t8e72 9705 9t9e81 9706 |
| Copyright terms: Public domain | W3C validator |