| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4t3lem | Unicode version | ||
| Description: Lemma for 4t3e12 9571 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| 4t3lem.1 |
|
| 4t3lem.2 |
|
| 4t3lem.3 |
|
| 4t3lem.4 |
|
| 4t3lem.5 |
|
| Ref | Expression |
|---|---|
| 4t3lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4t3lem.3 |
. . 3
| |
| 2 | 1 | oveq2i 5936 |
. 2
|
| 3 | 4t3lem.1 |
. . . . . 6
| |
| 4 | 3 | nn0cni 9278 |
. . . . 5
|
| 5 | 4t3lem.2 |
. . . . . 6
| |
| 6 | 5 | nn0cni 9278 |
. . . . 5
|
| 7 | ax-1cn 7989 |
. . . . 5
| |
| 8 | 4, 6, 7 | adddii 8053 |
. . . 4
|
| 9 | 4t3lem.4 |
. . . . 5
| |
| 10 | 4 | mulridi 8045 |
. . . . 5
|
| 11 | 9, 10 | oveq12i 5937 |
. . . 4
|
| 12 | 8, 11 | eqtri 2217 |
. . 3
|
| 13 | 4t3lem.5 |
. . 3
| |
| 14 | 12, 13 | eqtri 2217 |
. 2
|
| 15 | 2, 14 | eqtri 2217 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulcom 7997 ax-mulass 7999 ax-distr 8000 ax-1rid 8003 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 df-n0 9267 |
| This theorem is referenced by: 4t3e12 9571 4t4e16 9572 5t2e10 9573 5t3e15 9574 5t4e20 9575 5t5e25 9576 6t3e18 9578 6t4e24 9579 6t5e30 9580 6t6e36 9581 7t3e21 9583 7t4e28 9584 7t5e35 9585 7t6e42 9586 7t7e49 9587 8t3e24 9589 8t4e32 9590 8t5e40 9591 8t6e48 9592 8t7e56 9593 8t8e64 9594 9t3e27 9596 9t4e36 9597 9t5e45 9598 9t6e54 9599 9t7e63 9600 9t8e72 9601 9t9e81 9602 |
| Copyright terms: Public domain | W3C validator |