![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4t3lem | Unicode version |
Description: Lemma for 4t3e12 9545 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
4t3lem.1 |
![]() ![]() ![]() ![]() |
4t3lem.2 |
![]() ![]() ![]() ![]() |
4t3lem.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4t3lem.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4t3lem.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
4t3lem |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4t3lem.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | oveq2i 5929 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 4t3lem.1 |
. . . . . 6
![]() ![]() ![]() ![]() | |
4 | 3 | nn0cni 9252 |
. . . . 5
![]() ![]() ![]() ![]() |
5 | 4t3lem.2 |
. . . . . 6
![]() ![]() ![]() ![]() | |
6 | 5 | nn0cni 9252 |
. . . . 5
![]() ![]() ![]() ![]() |
7 | ax-1cn 7965 |
. . . . 5
![]() ![]() ![]() ![]() | |
8 | 4, 6, 7 | adddii 8029 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 4t3lem.4 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 4 | mulid1i 8021 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 9, 10 | oveq12i 5930 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 8, 11 | eqtri 2214 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 4t3lem.5 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 12, 13 | eqtri 2214 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 2, 14 | eqtri 2214 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulcom 7973 ax-mulass 7975 ax-distr 7976 ax-1rid 7979 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-inn 8983 df-n0 9241 |
This theorem is referenced by: 4t3e12 9545 4t4e16 9546 5t2e10 9547 5t3e15 9548 5t4e20 9549 5t5e25 9550 6t3e18 9552 6t4e24 9553 6t5e30 9554 6t6e36 9555 7t3e21 9557 7t4e28 9558 7t5e35 9559 7t6e42 9560 7t7e49 9561 8t3e24 9563 8t4e32 9564 8t5e40 9565 8t6e48 9566 8t7e56 9567 8t8e64 9568 9t3e27 9570 9t4e36 9571 9t5e45 9572 9t6e54 9573 9t7e63 9574 9t8e72 9575 9t9e81 9576 |
Copyright terms: Public domain | W3C validator |