ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numsucc Unicode version

Theorem numsucc 9513
Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numsucc.1  |-  Y  e. 
NN0
numsucc.2  |-  T  =  ( Y  +  1 )
numsucc.3  |-  A  e. 
NN0
numsucc.4  |-  ( A  +  1 )  =  B
numsucc.5  |-  N  =  ( ( T  x.  A )  +  Y
)
Assertion
Ref Expression
numsucc  |-  ( N  +  1 )  =  ( ( T  x.  B )  +  0 )

Proof of Theorem numsucc
StepHypRef Expression
1 numsucc.2 . . . . . . 7  |-  T  =  ( Y  +  1 )
2 numsucc.1 . . . . . . . 8  |-  Y  e. 
NN0
3 1nn0 9282 . . . . . . . 8  |-  1  e.  NN0
42, 3nn0addcli 9303 . . . . . . 7  |-  ( Y  +  1 )  e. 
NN0
51, 4eqeltri 2269 . . . . . 6  |-  T  e. 
NN0
65nn0cni 9278 . . . . 5  |-  T  e.  CC
76mulridi 8045 . . . 4  |-  ( T  x.  1 )  =  T
87oveq2i 5936 . . 3  |-  ( ( T  x.  A )  +  ( T  x.  1 ) )  =  ( ( T  x.  A )  +  T
)
9 numsucc.3 . . . . 5  |-  A  e. 
NN0
109nn0cni 9278 . . . 4  |-  A  e.  CC
11 ax-1cn 7989 . . . 4  |-  1  e.  CC
126, 10, 11adddii 8053 . . 3  |-  ( T  x.  ( A  + 
1 ) )  =  ( ( T  x.  A )  +  ( T  x.  1 ) )
131eqcomi 2200 . . . 4  |-  ( Y  +  1 )  =  T
14 numsucc.5 . . . 4  |-  N  =  ( ( T  x.  A )  +  Y
)
155, 9, 2, 13, 14numsuc 9487 . . 3  |-  ( N  +  1 )  =  ( ( T  x.  A )  +  T
)
168, 12, 153eqtr4ri 2228 . 2  |-  ( N  +  1 )  =  ( T  x.  ( A  +  1 ) )
17 numsucc.4 . . 3  |-  ( A  +  1 )  =  B
1817oveq2i 5936 . 2  |-  ( T  x.  ( A  + 
1 ) )  =  ( T  x.  B
)
199, 3nn0addcli 9303 . . . 4  |-  ( A  +  1 )  e. 
NN0
2017, 19eqeltrri 2270 . . 3  |-  B  e. 
NN0
215, 20num0u 9484 . 2  |-  ( T  x.  B )  =  ( ( T  x.  B )  +  0 )
2216, 18, 213eqtri 2221 1  |-  ( N  +  1 )  =  ( ( T  x.  B )  +  0 )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167  (class class class)co 5925   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901   NN0cn0 9266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216  df-inn 9008  df-n0 9267
This theorem is referenced by:  decsucc  9514
  Copyright terms: Public domain W3C validator