ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numsucc Unicode version

Theorem numsucc 9233
Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numsucc.1  |-  Y  e. 
NN0
numsucc.2  |-  T  =  ( Y  +  1 )
numsucc.3  |-  A  e. 
NN0
numsucc.4  |-  ( A  +  1 )  =  B
numsucc.5  |-  N  =  ( ( T  x.  A )  +  Y
)
Assertion
Ref Expression
numsucc  |-  ( N  +  1 )  =  ( ( T  x.  B )  +  0 )

Proof of Theorem numsucc
StepHypRef Expression
1 numsucc.2 . . . . . . 7  |-  T  =  ( Y  +  1 )
2 numsucc.1 . . . . . . . 8  |-  Y  e. 
NN0
3 1nn0 9005 . . . . . . . 8  |-  1  e.  NN0
42, 3nn0addcli 9026 . . . . . . 7  |-  ( Y  +  1 )  e. 
NN0
51, 4eqeltri 2212 . . . . . 6  |-  T  e. 
NN0
65nn0cni 9001 . . . . 5  |-  T  e.  CC
76mulid1i 7780 . . . 4  |-  ( T  x.  1 )  =  T
87oveq2i 5785 . . 3  |-  ( ( T  x.  A )  +  ( T  x.  1 ) )  =  ( ( T  x.  A )  +  T
)
9 numsucc.3 . . . . 5  |-  A  e. 
NN0
109nn0cni 9001 . . . 4  |-  A  e.  CC
11 ax-1cn 7725 . . . 4  |-  1  e.  CC
126, 10, 11adddii 7788 . . 3  |-  ( T  x.  ( A  + 
1 ) )  =  ( ( T  x.  A )  +  ( T  x.  1 ) )
131eqcomi 2143 . . . 4  |-  ( Y  +  1 )  =  T
14 numsucc.5 . . . 4  |-  N  =  ( ( T  x.  A )  +  Y
)
155, 9, 2, 13, 14numsuc 9207 . . 3  |-  ( N  +  1 )  =  ( ( T  x.  A )  +  T
)
168, 12, 153eqtr4ri 2171 . 2  |-  ( N  +  1 )  =  ( T  x.  ( A  +  1 ) )
17 numsucc.4 . . 3  |-  ( A  +  1 )  =  B
1817oveq2i 5785 . 2  |-  ( T  x.  ( A  + 
1 ) )  =  ( T  x.  B
)
199, 3nn0addcli 9026 . . . 4  |-  ( A  +  1 )  e. 
NN0
2017, 19eqeltrri 2213 . . 3  |-  B  e. 
NN0
215, 20num0u 9204 . 2  |-  ( T  x.  B )  =  ( ( T  x.  B )  +  0 )
2216, 18, 213eqtri 2164 1  |-  ( N  +  1 )  =  ( ( T  x.  B )  +  0 )
Colors of variables: wff set class
Syntax hints:    = wceq 1331    e. wcel 1480  (class class class)co 5774   0cc0 7632   1c1 7633    + caddc 7635    x. cmul 7637   NN0cn0 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7947  df-inn 8733  df-n0 8990
This theorem is referenced by:  decsucc  9234
  Copyright terms: Public domain W3C validator