ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numsucc Unicode version

Theorem numsucc 9578
Description: The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numsucc.1  |-  Y  e. 
NN0
numsucc.2  |-  T  =  ( Y  +  1 )
numsucc.3  |-  A  e. 
NN0
numsucc.4  |-  ( A  +  1 )  =  B
numsucc.5  |-  N  =  ( ( T  x.  A )  +  Y
)
Assertion
Ref Expression
numsucc  |-  ( N  +  1 )  =  ( ( T  x.  B )  +  0 )

Proof of Theorem numsucc
StepHypRef Expression
1 numsucc.2 . . . . . . 7  |-  T  =  ( Y  +  1 )
2 numsucc.1 . . . . . . . 8  |-  Y  e. 
NN0
3 1nn0 9346 . . . . . . . 8  |-  1  e.  NN0
42, 3nn0addcli 9367 . . . . . . 7  |-  ( Y  +  1 )  e. 
NN0
51, 4eqeltri 2280 . . . . . 6  |-  T  e. 
NN0
65nn0cni 9342 . . . . 5  |-  T  e.  CC
76mulridi 8109 . . . 4  |-  ( T  x.  1 )  =  T
87oveq2i 5978 . . 3  |-  ( ( T  x.  A )  +  ( T  x.  1 ) )  =  ( ( T  x.  A )  +  T
)
9 numsucc.3 . . . . 5  |-  A  e. 
NN0
109nn0cni 9342 . . . 4  |-  A  e.  CC
11 ax-1cn 8053 . . . 4  |-  1  e.  CC
126, 10, 11adddii 8117 . . 3  |-  ( T  x.  ( A  + 
1 ) )  =  ( ( T  x.  A )  +  ( T  x.  1 ) )
131eqcomi 2211 . . . 4  |-  ( Y  +  1 )  =  T
14 numsucc.5 . . . 4  |-  N  =  ( ( T  x.  A )  +  Y
)
155, 9, 2, 13, 14numsuc 9552 . . 3  |-  ( N  +  1 )  =  ( ( T  x.  A )  +  T
)
168, 12, 153eqtr4ri 2239 . 2  |-  ( N  +  1 )  =  ( T  x.  ( A  +  1 ) )
17 numsucc.4 . . 3  |-  ( A  +  1 )  =  B
1817oveq2i 5978 . 2  |-  ( T  x.  ( A  + 
1 ) )  =  ( T  x.  B
)
199, 3nn0addcli 9367 . . . 4  |-  ( A  +  1 )  e. 
NN0
2017, 19eqeltrri 2281 . . 3  |-  B  e. 
NN0
215, 20num0u 9549 . 2  |-  ( T  x.  B )  =  ( ( T  x.  B )  +  0 )
2216, 18, 213eqtri 2232 1  |-  ( N  +  1 )  =  ( ( T  x.  B )  +  0 )
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178  (class class class)co 5967   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965   NN0cn0 9330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-sub 8280  df-inn 9072  df-n0 9331
This theorem is referenced by:  decsucc  9579
  Copyright terms: Public domain W3C validator