ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddiri Unicode version

Theorem adddiri 8054
Description: Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.)
Hypotheses
Ref Expression
axi.1  |-  A  e.  CC
axi.2  |-  B  e.  CC
axi.3  |-  C  e.  CC
Assertion
Ref Expression
adddiri  |-  ( ( A  +  B )  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C ) )

Proof of Theorem adddiri
StepHypRef Expression
1 axi.1 . 2  |-  A  e.  CC
2 axi.2 . 2  |-  B  e.  CC
3 axi.3 . 2  |-  C  e.  CC
4 adddir 8034 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C
) ) )
51, 2, 3, 4mp3an 1348 1  |-  ( ( A  +  B )  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167  (class class class)co 5925   CCcc 7894    + caddc 7899    x. cmul 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-addcl 7992  ax-mulcom 7997  ax-distr 8000
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  numma  9517  binom2i  10757  3dvdsdec  12047  3dvds2dec  12048  dec5nprm  12608  dec2nprm  12609  karatsuba  12624  sincosq3sgn  15148  sincosq4sgn  15149  cosq23lt0  15153  2lgsoddprmlem3c  15434  2lgsoddprmlem3d  15435
  Copyright terms: Public domain W3C validator