ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decmul10add Unicode version

Theorem decmul10add 9390
Description: A multiplication of a number and a numeral expressed as addition with first summand as multiple of 10. (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decmul10add.1  |-  A  e. 
NN0
decmul10add.2  |-  B  e. 
NN0
decmul10add.3  |-  M  e. 
NN0
decmul10add.4  |-  E  =  ( M  x.  A
)
decmul10add.5  |-  F  =  ( M  x.  B
)
Assertion
Ref Expression
decmul10add  |-  ( M  x. ; A B )  =  (; E
0  +  F )

Proof of Theorem decmul10add
StepHypRef Expression
1 dfdec10 9325 . . 3  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
21oveq2i 5853 . 2  |-  ( M  x. ; A B )  =  ( M  x.  ( (; 1
0  x.  A )  +  B ) )
3 decmul10add.3 . . . 4  |-  M  e. 
NN0
43nn0cni 9126 . . 3  |-  M  e.  CC
5 10nn0 9339 . . . . 5  |- ; 1 0  e.  NN0
6 decmul10add.1 . . . . 5  |-  A  e. 
NN0
75, 6nn0mulcli 9152 . . . 4  |-  (; 1 0  x.  A
)  e.  NN0
87nn0cni 9126 . . 3  |-  (; 1 0  x.  A
)  e.  CC
9 decmul10add.2 . . . 4  |-  B  e. 
NN0
109nn0cni 9126 . . 3  |-  B  e.  CC
114, 8, 10adddii 7909 . 2  |-  ( M  x.  ( (; 1 0  x.  A
)  +  B ) )  =  ( ( M  x.  (; 1 0  x.  A
) )  +  ( M  x.  B ) )
125nn0cni 9126 . . . . 5  |- ; 1 0  e.  CC
136nn0cni 9126 . . . . 5  |-  A  e.  CC
144, 12, 13mul12i 8044 . . . 4  |-  ( M  x.  (; 1 0  x.  A
) )  =  (; 1
0  x.  ( M  x.  A ) )
153, 6nn0mulcli 9152 . . . . 5  |-  ( M  x.  A )  e. 
NN0
1615dec0u 9342 . . . 4  |-  (; 1 0  x.  ( M  x.  A )
)  = ; ( M  x.  A
) 0
17 decmul10add.4 . . . . . 6  |-  E  =  ( M  x.  A
)
1817eqcomi 2169 . . . . 5  |-  ( M  x.  A )  =  E
1918deceq1i 9328 . . . 4  |- ; ( M  x.  A
) 0  = ; E 0
2014, 16, 193eqtri 2190 . . 3  |-  ( M  x.  (; 1 0  x.  A
) )  = ; E 0
21 decmul10add.5 . . . 4  |-  F  =  ( M  x.  B
)
2221eqcomi 2169 . . 3  |-  ( M  x.  B )  =  F
2320, 22oveq12i 5854 . 2  |-  ( ( M  x.  (; 1 0  x.  A
) )  +  ( M  x.  B ) )  =  (; E 0  +  F
)
242, 11, 233eqtri 2190 1  |-  ( M  x. ; A B )  =  (; E
0  +  F )
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136  (class class class)co 5842   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758   NN0cn0 9114  ;cdc 9322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-n0 9115  df-dec 9323
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator