ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3dec Unicode version

Theorem 3dec 10823
Description: A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dec.a  |-  A  e. 
NN0
3dec.b  |-  B  e. 
NN0
Assertion
Ref Expression
3dec  |- ;; A B C  =  (
( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)

Proof of Theorem 3dec
StepHypRef Expression
1 dfdec10 9477 . 2  |- ;; A B C  =  (
(; 1 0  x. ; A B )  +  C )
2 dfdec10 9477 . . . . . 6  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
32oveq2i 5936 . . . . 5  |-  (; 1 0  x. ; A B )  =  (; 1 0  x.  (
(; 1 0  x.  A
)  +  B ) )
4 1nn 9018 . . . . . . . 8  |-  1  e.  NN
54decnncl2 9497 . . . . . . 7  |- ; 1 0  e.  NN
65nncni 9017 . . . . . 6  |- ; 1 0  e.  CC
7 3dec.a . . . . . . . 8  |-  A  e. 
NN0
87nn0cni 9278 . . . . . . 7  |-  A  e.  CC
96, 8mulcli 8048 . . . . . 6  |-  (; 1 0  x.  A
)  e.  CC
10 3dec.b . . . . . . 7  |-  B  e. 
NN0
1110nn0cni 9278 . . . . . 6  |-  B  e.  CC
126, 9, 11adddii 8053 . . . . 5  |-  (; 1 0  x.  (
(; 1 0  x.  A
)  +  B ) )  =  ( (; 1
0  x.  (; 1 0  x.  A
) )  +  (; 1
0  x.  B ) )
133, 12eqtri 2217 . . . 4  |-  (; 1 0  x. ; A B )  =  ( (; 1 0  x.  (; 1 0  x.  A ) )  +  (; 1 0  x.  B
) )
146, 6, 8mulassi 8052 . . . . . . 7  |-  ( (; 1
0  x. ; 1 0 )  x.  A )  =  (; 1
0  x.  (; 1 0  x.  A
) )
1514eqcomi 2200 . . . . . 6  |-  (; 1 0  x.  (; 1 0  x.  A ) )  =  ( (; 1 0  x. ; 1 0 )  x.  A )
166sqvali 10728 . . . . . . . 8  |-  (; 1 0 ^ 2 )  =  (; 1 0  x. ; 1 0 )
1716eqcomi 2200 . . . . . . 7  |-  (; 1 0  x. ; 1 0 )  =  (; 1 0 ^ 2 )
1817oveq1i 5935 . . . . . 6  |-  ( (; 1
0  x. ; 1 0 )  x.  A )  =  ( (; 1 0 ^ 2 )  x.  A )
1915, 18eqtri 2217 . . . . 5  |-  (; 1 0  x.  (; 1 0  x.  A ) )  =  ( (; 1 0 ^ 2 )  x.  A )
2019oveq1i 5935 . . . 4  |-  ( (; 1
0  x.  (; 1 0  x.  A
) )  +  (; 1
0  x.  B ) )  =  ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )
2113, 20eqtri 2217 . . 3  |-  (; 1 0  x. ; A B )  =  ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )
2221oveq1i 5935 . 2  |-  ( (; 1
0  x. ; A B )  +  C )  =  ( ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)
231, 22eqtri 2217 1  |- ;; A B C  =  (
( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167  (class class class)co 5925   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901   2c2 9058   NN0cn0 9266  ;cdc 9474   ^cexp 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-seqfrec 10557  df-exp 10648
This theorem is referenced by:  3dvds2dec  12048
  Copyright terms: Public domain W3C validator