ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3dec Unicode version

Theorem 3dec 10473
Description: A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dec.a  |-  A  e. 
NN0
3dec.b  |-  B  e. 
NN0
Assertion
Ref Expression
3dec  |- ;; A B C  =  (
( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)

Proof of Theorem 3dec
StepHypRef Expression
1 dfdec10 9197 . 2  |- ;; A B C  =  (
(; 1 0  x. ; A B )  +  C )
2 dfdec10 9197 . . . . . 6  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
32oveq2i 5785 . . . . 5  |-  (; 1 0  x. ; A B )  =  (; 1 0  x.  (
(; 1 0  x.  A
)  +  B ) )
4 1nn 8743 . . . . . . . 8  |-  1  e.  NN
54decnncl2 9217 . . . . . . 7  |- ; 1 0  e.  NN
65nncni 8742 . . . . . 6  |- ; 1 0  e.  CC
7 3dec.a . . . . . . . 8  |-  A  e. 
NN0
87nn0cni 9001 . . . . . . 7  |-  A  e.  CC
96, 8mulcli 7783 . . . . . 6  |-  (; 1 0  x.  A
)  e.  CC
10 3dec.b . . . . . . 7  |-  B  e. 
NN0
1110nn0cni 9001 . . . . . 6  |-  B  e.  CC
126, 9, 11adddii 7788 . . . . 5  |-  (; 1 0  x.  (
(; 1 0  x.  A
)  +  B ) )  =  ( (; 1
0  x.  (; 1 0  x.  A
) )  +  (; 1
0  x.  B ) )
133, 12eqtri 2160 . . . 4  |-  (; 1 0  x. ; A B )  =  ( (; 1 0  x.  (; 1 0  x.  A ) )  +  (; 1 0  x.  B
) )
146, 6, 8mulassi 7787 . . . . . . 7  |-  ( (; 1
0  x. ; 1 0 )  x.  A )  =  (; 1
0  x.  (; 1 0  x.  A
) )
1514eqcomi 2143 . . . . . 6  |-  (; 1 0  x.  (; 1 0  x.  A ) )  =  ( (; 1 0  x. ; 1 0 )  x.  A )
166sqvali 10384 . . . . . . . 8  |-  (; 1 0 ^ 2 )  =  (; 1 0  x. ; 1 0 )
1716eqcomi 2143 . . . . . . 7  |-  (; 1 0  x. ; 1 0 )  =  (; 1 0 ^ 2 )
1817oveq1i 5784 . . . . . 6  |-  ( (; 1
0  x. ; 1 0 )  x.  A )  =  ( (; 1 0 ^ 2 )  x.  A )
1915, 18eqtri 2160 . . . . 5  |-  (; 1 0  x.  (; 1 0  x.  A ) )  =  ( (; 1 0 ^ 2 )  x.  A )
2019oveq1i 5784 . . . 4  |-  ( (; 1
0  x.  (; 1 0  x.  A
) )  +  (; 1
0  x.  B ) )  =  ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )
2113, 20eqtri 2160 . . 3  |-  (; 1 0  x. ; A B )  =  ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )
2221oveq1i 5784 . 2  |-  ( (; 1
0  x. ; A B )  +  C )  =  ( ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)
231, 22eqtri 2160 1  |- ;; A B C  =  (
( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)
Colors of variables: wff set class
Syntax hints:    = wceq 1331    e. wcel 1480  (class class class)co 5774   0cc0 7632   1c1 7633    + caddc 7635    x. cmul 7637   2c2 8783   NN0cn0 8989  ;cdc 9194   ^cexp 10304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-5 8794  df-6 8795  df-7 8796  df-8 8797  df-9 8798  df-n0 8990  df-z 9067  df-dec 9195  df-uz 9339  df-seqfrec 10231  df-exp 10305
This theorem is referenced by:  3dvds2dec  11574
  Copyright terms: Public domain W3C validator