Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3dec | Unicode version |
Description: A "decimal constructor" which is used to build up "decimal integers" or "numeric terms" in base 10 with 3 "digits". (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
3dec.a | |
3dec.b |
Ref | Expression |
---|---|
3dec | ;; ; ; |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdec10 9339 | . 2 ;; ; ; | |
2 | dfdec10 9339 | . . . . . 6 ; ; | |
3 | 2 | oveq2i 5862 | . . . . 5 ; ; ; ; |
4 | 1nn 8882 | . . . . . . . 8 | |
5 | 4 | decnncl2 9359 | . . . . . . 7 ; |
6 | 5 | nncni 8881 | . . . . . 6 ; |
7 | 3dec.a | . . . . . . . 8 | |
8 | 7 | nn0cni 9140 | . . . . . . 7 |
9 | 6, 8 | mulcli 7918 | . . . . . 6 ; |
10 | 3dec.b | . . . . . . 7 | |
11 | 10 | nn0cni 9140 | . . . . . 6 |
12 | 6, 9, 11 | adddii 7923 | . . . . 5 ; ; ; ; ; |
13 | 3, 12 | eqtri 2191 | . . . 4 ; ; ; ; ; |
14 | 6, 6, 8 | mulassi 7922 | . . . . . . 7 ; ; ; ; |
15 | 14 | eqcomi 2174 | . . . . . 6 ; ; ; ; |
16 | 6 | sqvali 10548 | . . . . . . . 8 ; ; ; |
17 | 16 | eqcomi 2174 | . . . . . . 7 ; ; ; |
18 | 17 | oveq1i 5861 | . . . . . 6 ; ; ; |
19 | 15, 18 | eqtri 2191 | . . . . 5 ; ; ; |
20 | 19 | oveq1i 5861 | . . . 4 ; ; ; ; ; |
21 | 13, 20 | eqtri 2191 | . . 3 ; ; ; ; |
22 | 21 | oveq1i 5861 | . 2 ; ; ; ; |
23 | 1, 22 | eqtri 2191 | 1 ;; ; ; |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wcel 2141 (class class class)co 5851 cc0 7767 c1 7768 caddc 7770 cmul 7772 c2 8922 cn0 9128 ;cdc 9336 cexp 10468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-mulrcl 7866 ax-addcom 7867 ax-mulcom 7868 ax-addass 7869 ax-mulass 7870 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-1rid 7874 ax-0id 7875 ax-rnegex 7876 ax-precex 7877 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-apti 7882 ax-pre-ltadd 7883 ax-pre-mulgt0 7884 ax-pre-mulext 7885 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-frec 6368 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-reap 8487 df-ap 8494 df-div 8583 df-inn 8872 df-2 8930 df-3 8931 df-4 8932 df-5 8933 df-6 8934 df-7 8935 df-8 8936 df-9 8937 df-n0 9129 df-z 9206 df-dec 9337 df-uz 9481 df-seqfrec 10395 df-exp 10469 |
This theorem is referenced by: 3dvds2dec 11818 |
Copyright terms: Public domain | W3C validator |