ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9t11e99 Unicode version

Theorem 9t11e99 9633
Description: 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
9t11e99  |-  ( 9  x. ; 1 1 )  = ; 9
9

Proof of Theorem 9t11e99
StepHypRef Expression
1 9cn 9124 . . . 4  |-  9  e.  CC
2 10nn0 9521 . . . . . 6  |- ; 1 0  e.  NN0
32nn0cni 9307 . . . . 5  |- ; 1 0  e.  CC
4 ax-1cn 8018 . . . . 5  |-  1  e.  CC
53, 4mulcli 8077 . . . 4  |-  (; 1 0  x.  1 )  e.  CC
61, 5, 4adddii 8082 . . 3  |-  ( 9  x.  ( (; 1 0  x.  1 )  +  1 ) )  =  ( ( 9  x.  (; 1 0  x.  1 ) )  +  ( 9  x.  1 ) )
73mulridi 8074 . . . . . 6  |-  (; 1 0  x.  1 )  = ; 1 0
87oveq2i 5955 . . . . 5  |-  ( 9  x.  (; 1 0  x.  1 ) )  =  ( 9  x. ; 1 0 )
91, 3mulcomi 8078 . . . . 5  |-  ( 9  x. ; 1 0 )  =  (; 1 0  x.  9 )
108, 9eqtri 2226 . . . 4  |-  ( 9  x.  (; 1 0  x.  1 ) )  =  (; 1
0  x.  9 )
111mulridi 8074 . . . 4  |-  ( 9  x.  1 )  =  9
1210, 11oveq12i 5956 . . 3  |-  ( ( 9  x.  (; 1 0  x.  1 ) )  +  ( 9  x.  1 ) )  =  ( (; 1
0  x.  9 )  +  9 )
136, 12eqtri 2226 . 2  |-  ( 9  x.  ( (; 1 0  x.  1 )  +  1 ) )  =  ( (; 1
0  x.  9 )  +  9 )
14 dfdec10 9507 . . 3  |- ; 1 1  =  ( (; 1 0  x.  1 )  +  1 )
1514oveq2i 5955 . 2  |-  ( 9  x. ; 1 1 )  =  ( 9  x.  (
(; 1 0  x.  1 )  +  1 ) )
16 dfdec10 9507 . 2  |- ; 9 9  =  ( (; 1 0  x.  9 )  +  9 )
1713, 15, 163eqtr4i 2236 1  |-  ( 9  x. ; 1 1 )  = ; 9
9
Colors of variables: wff set class
Syntax hints:    = wceq 1373  (class class class)co 5944   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930   9c9 9094  ;cdc 9504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-sub 8245  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-dec 9505
This theorem is referenced by:  3dvds2dec  12177
  Copyright terms: Public domain W3C validator