| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9t11e99 | Unicode version | ||
| Description: 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 9t11e99 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9cn 9126 |
. . . 4
| |
| 2 | 10nn0 9523 |
. . . . . 6
| |
| 3 | 2 | nn0cni 9309 |
. . . . 5
|
| 4 | ax-1cn 8020 |
. . . . 5
| |
| 5 | 3, 4 | mulcli 8079 |
. . . 4
|
| 6 | 1, 5, 4 | adddii 8084 |
. . 3
|
| 7 | 3 | mulridi 8076 |
. . . . . 6
|
| 8 | 7 | oveq2i 5957 |
. . . . 5
|
| 9 | 1, 3 | mulcomi 8080 |
. . . . 5
|
| 10 | 8, 9 | eqtri 2226 |
. . . 4
|
| 11 | 1 | mulridi 8076 |
. . . 4
|
| 12 | 10, 11 | oveq12i 5958 |
. . 3
|
| 13 | 6, 12 | eqtri 2226 |
. 2
|
| 14 | dfdec10 9509 |
. . 3
| |
| 15 | 14 | oveq2i 5957 |
. 2
|
| 16 | dfdec10 9509 |
. 2
| |
| 17 | 13, 15, 16 | 3eqtr4i 2236 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-sub 8247 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-5 9100 df-6 9101 df-7 9102 df-8 9103 df-9 9104 df-n0 9298 df-dec 9507 |
| This theorem is referenced by: 3dvds2dec 12210 |
| Copyright terms: Public domain | W3C validator |