ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9t11e99 Unicode version

Theorem 9t11e99 9334
Description: 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
9t11e99  |-  ( 9  x. ; 1 1 )  = ; 9
9

Proof of Theorem 9t11e99
StepHypRef Expression
1 9cn 8831 . . . 4  |-  9  e.  CC
2 10nn0 9222 . . . . . 6  |- ; 1 0  e.  NN0
32nn0cni 9012 . . . . 5  |- ; 1 0  e.  CC
4 ax-1cn 7736 . . . . 5  |-  1  e.  CC
53, 4mulcli 7794 . . . 4  |-  (; 1 0  x.  1 )  e.  CC
61, 5, 4adddii 7799 . . 3  |-  ( 9  x.  ( (; 1 0  x.  1 )  +  1 ) )  =  ( ( 9  x.  (; 1 0  x.  1 ) )  +  ( 9  x.  1 ) )
73mulid1i 7791 . . . . . 6  |-  (; 1 0  x.  1 )  = ; 1 0
87oveq2i 5792 . . . . 5  |-  ( 9  x.  (; 1 0  x.  1 ) )  =  ( 9  x. ; 1 0 )
91, 3mulcomi 7795 . . . . 5  |-  ( 9  x. ; 1 0 )  =  (; 1 0  x.  9 )
108, 9eqtri 2161 . . . 4  |-  ( 9  x.  (; 1 0  x.  1 ) )  =  (; 1
0  x.  9 )
111mulid1i 7791 . . . 4  |-  ( 9  x.  1 )  =  9
1210, 11oveq12i 5793 . . 3  |-  ( ( 9  x.  (; 1 0  x.  1 ) )  +  ( 9  x.  1 ) )  =  ( (; 1
0  x.  9 )  +  9 )
136, 12eqtri 2161 . 2  |-  ( 9  x.  ( (; 1 0  x.  1 )  +  1 ) )  =  ( (; 1
0  x.  9 )  +  9 )
14 dfdec10 9208 . . 3  |- ; 1 1  =  ( (; 1 0  x.  1 )  +  1 )
1514oveq2i 5792 . 2  |-  ( 9  x. ; 1 1 )  =  ( 9  x.  (
(; 1 0  x.  1 )  +  1 ) )
16 dfdec10 9208 . 2  |- ; 9 9  =  ( (; 1 0  x.  9 )  +  9 )
1713, 15, 163eqtr4i 2171 1  |-  ( 9  x. ; 1 1 )  = ; 9
9
Colors of variables: wff set class
Syntax hints:    = wceq 1332  (class class class)co 5781   0cc0 7643   1c1 7644    + caddc 7646    x. cmul 7648   9c9 8801  ;cdc 9205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-setind 4459  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-cnre 7754
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-br 3937  df-opab 3997  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-iota 5095  df-fun 5132  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-sub 7958  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-5 8805  df-6 8806  df-7 8807  df-8 8808  df-9 8809  df-n0 9001  df-dec 9206
This theorem is referenced by:  3dvds2dec  11597
  Copyright terms: Public domain W3C validator