ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom2i Unicode version

Theorem binom2i 10242
Description: The square of a binomial. (Contributed by NM, 11-Aug-1999.)
Hypotheses
Ref Expression
binom2.1  |-  A  e.  CC
binom2.2  |-  B  e.  CC
Assertion
Ref Expression
binom2i  |-  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) )

Proof of Theorem binom2i
StepHypRef Expression
1 binom2.1 . . . . 5  |-  A  e.  CC
2 binom2.2 . . . . 5  |-  B  e.  CC
31, 2addcli 7642 . . . 4  |-  ( A  +  B )  e.  CC
43, 1, 2adddii 7648 . . 3  |-  ( ( A  +  B )  x.  ( A  +  B ) )  =  ( ( ( A  +  B )  x.  A )  +  ( ( A  +  B
)  x.  B ) )
51, 2, 1adddiri 7649 . . . . . 6  |-  ( ( A  +  B )  x.  A )  =  ( ( A  x.  A )  +  ( B  x.  A ) )
62, 1mulcomi 7644 . . . . . . 7  |-  ( B  x.  A )  =  ( A  x.  B
)
76oveq2i 5717 . . . . . 6  |-  ( ( A  x.  A )  +  ( B  x.  A ) )  =  ( ( A  x.  A )  +  ( A  x.  B ) )
85, 7eqtri 2120 . . . . 5  |-  ( ( A  +  B )  x.  A )  =  ( ( A  x.  A )  +  ( A  x.  B ) )
91, 2, 2adddiri 7649 . . . . 5  |-  ( ( A  +  B )  x.  B )  =  ( ( A  x.  B )  +  ( B  x.  B ) )
108, 9oveq12i 5718 . . . 4  |-  ( ( ( A  +  B
)  x.  A )  +  ( ( A  +  B )  x.  B ) )  =  ( ( ( A  x.  A )  +  ( A  x.  B
) )  +  ( ( A  x.  B
)  +  ( B  x.  B ) ) )
111, 1mulcli 7643 . . . . . 6  |-  ( A  x.  A )  e.  CC
121, 2mulcli 7643 . . . . . 6  |-  ( A  x.  B )  e.  CC
1311, 12addcli 7642 . . . . 5  |-  ( ( A  x.  A )  +  ( A  x.  B ) )  e.  CC
142, 2mulcli 7643 . . . . 5  |-  ( B  x.  B )  e.  CC
1513, 12, 14addassi 7646 . . . 4  |-  ( ( ( ( A  x.  A )  +  ( A  x.  B ) )  +  ( A  x.  B ) )  +  ( B  x.  B ) )  =  ( ( ( A  x.  A )  +  ( A  x.  B
) )  +  ( ( A  x.  B
)  +  ( B  x.  B ) ) )
1611, 12, 12addassi 7646 . . . . 5  |-  ( ( ( A  x.  A
)  +  ( A  x.  B ) )  +  ( A  x.  B ) )  =  ( ( A  x.  A )  +  ( ( A  x.  B
)  +  ( A  x.  B ) ) )
1716oveq1i 5716 . . . 4  |-  ( ( ( ( A  x.  A )  +  ( A  x.  B ) )  +  ( A  x.  B ) )  +  ( B  x.  B ) )  =  ( ( ( A  x.  A )  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) )
1810, 15, 173eqtr2i 2126 . . 3  |-  ( ( ( A  +  B
)  x.  A )  +  ( ( A  +  B )  x.  B ) )  =  ( ( ( A  x.  A )  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) )
194, 18eqtri 2120 . 2  |-  ( ( A  +  B )  x.  ( A  +  B ) )  =  ( ( ( A  x.  A )  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) )
203sqvali 10213 . 2  |-  ( ( A  +  B ) ^ 2 )  =  ( ( A  +  B )  x.  ( A  +  B )
)
211sqvali 10213 . . . 4  |-  ( A ^ 2 )  =  ( A  x.  A
)
22122timesi 8702 . . . 4  |-  ( 2  x.  ( A  x.  B ) )  =  ( ( A  x.  B )  +  ( A  x.  B ) )
2321, 22oveq12i 5718 . . 3  |-  ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  =  ( ( A  x.  A )  +  ( ( A  x.  B
)  +  ( A  x.  B ) ) )
242sqvali 10213 . . 3  |-  ( B ^ 2 )  =  ( B  x.  B
)
2523, 24oveq12i 5718 . 2  |-  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) )  =  ( ( ( A  x.  A )  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) )
2619, 20, 253eqtr4i 2130 1  |-  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1299    e. wcel 1448  (class class class)co 5706   CCcc 7498    + caddc 7503    x. cmul 7505   2c2 8629   ^cexp 10133
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-n0 8830  df-z 8907  df-uz 9177  df-seqfrec 10060  df-exp 10134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator