Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > numma | Unicode version |
Description: Perform a multiply-add of two decimal integers and against a fixed multiplicand (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numma.1 | |
numma.2 | |
numma.3 | |
numma.4 | |
numma.5 | |
numma.6 | |
numma.7 | |
numma.8 | |
numma.9 | |
numma.10 |
Ref | Expression |
---|---|
numma |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma.6 | . . . 4 | |
2 | 1 | oveq1i 5852 | . . 3 |
3 | numma.7 | . . 3 | |
4 | 2, 3 | oveq12i 5854 | . 2 |
5 | numma.1 | . . . . . . 7 | |
6 | 5 | nn0cni 9126 | . . . . . 6 |
7 | numma.2 | . . . . . . . 8 | |
8 | 7 | nn0cni 9126 | . . . . . . 7 |
9 | numma.8 | . . . . . . . 8 | |
10 | 9 | nn0cni 9126 | . . . . . . 7 |
11 | 8, 10 | mulcli 7904 | . . . . . 6 |
12 | numma.4 | . . . . . . 7 | |
13 | 12 | nn0cni 9126 | . . . . . 6 |
14 | 6, 11, 13 | adddii 7909 | . . . . 5 |
15 | 6, 8, 10 | mulassi 7908 | . . . . . 6 |
16 | 15 | oveq1i 5852 | . . . . 5 |
17 | 14, 16 | eqtr4i 2189 | . . . 4 |
18 | 17 | oveq1i 5852 | . . 3 |
19 | 6, 8 | mulcli 7904 | . . . . . 6 |
20 | numma.3 | . . . . . . 7 | |
21 | 20 | nn0cni 9126 | . . . . . 6 |
22 | 19, 21, 10 | adddiri 7910 | . . . . 5 |
23 | 22 | oveq1i 5852 | . . . 4 |
24 | 19, 10 | mulcli 7904 | . . . . 5 |
25 | 6, 13 | mulcli 7904 | . . . . 5 |
26 | 21, 10 | mulcli 7904 | . . . . 5 |
27 | numma.5 | . . . . . 6 | |
28 | 27 | nn0cni 9126 | . . . . 5 |
29 | 24, 25, 26, 28 | add4i 8063 | . . . 4 |
30 | 23, 29 | eqtr4i 2189 | . . 3 |
31 | 18, 30 | eqtr4i 2189 | . 2 |
32 | numma.9 | . . . 4 | |
33 | 32 | oveq2i 5853 | . . 3 |
34 | numma.10 | . . 3 | |
35 | 33, 34 | oveq12i 5854 | . 2 |
36 | 4, 31, 35 | 3eqtr2i 2192 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 (class class class)co 5842 caddc 7756 cmul 7758 cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 df-n0 9115 |
This theorem is referenced by: nummac 9366 numadd 9368 decma 9372 |
Copyright terms: Public domain | W3C validator |