| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > numma | Unicode version | ||
| Description: Perform a multiply-add of
two decimal integers |
| Ref | Expression |
|---|---|
| numma.1 |
|
| numma.2 |
|
| numma.3 |
|
| numma.4 |
|
| numma.5 |
|
| numma.6 |
|
| numma.7 |
|
| numma.8 |
|
| numma.9 |
|
| numma.10 |
|
| Ref | Expression |
|---|---|
| numma |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numma.6 |
. . . 4
| |
| 2 | 1 | oveq1i 6010 |
. . 3
|
| 3 | numma.7 |
. . 3
| |
| 4 | 2, 3 | oveq12i 6012 |
. 2
|
| 5 | numma.1 |
. . . . . . 7
| |
| 6 | 5 | nn0cni 9377 |
. . . . . 6
|
| 7 | numma.2 |
. . . . . . . 8
| |
| 8 | 7 | nn0cni 9377 |
. . . . . . 7
|
| 9 | numma.8 |
. . . . . . . 8
| |
| 10 | 9 | nn0cni 9377 |
. . . . . . 7
|
| 11 | 8, 10 | mulcli 8147 |
. . . . . 6
|
| 12 | numma.4 |
. . . . . . 7
| |
| 13 | 12 | nn0cni 9377 |
. . . . . 6
|
| 14 | 6, 11, 13 | adddii 8152 |
. . . . 5
|
| 15 | 6, 8, 10 | mulassi 8151 |
. . . . . 6
|
| 16 | 15 | oveq1i 6010 |
. . . . 5
|
| 17 | 14, 16 | eqtr4i 2253 |
. . . 4
|
| 18 | 17 | oveq1i 6010 |
. . 3
|
| 19 | 6, 8 | mulcli 8147 |
. . . . . 6
|
| 20 | numma.3 |
. . . . . . 7
| |
| 21 | 20 | nn0cni 9377 |
. . . . . 6
|
| 22 | 19, 21, 10 | adddiri 8153 |
. . . . 5
|
| 23 | 22 | oveq1i 6010 |
. . . 4
|
| 24 | 19, 10 | mulcli 8147 |
. . . . 5
|
| 25 | 6, 13 | mulcli 8147 |
. . . . 5
|
| 26 | 21, 10 | mulcli 8147 |
. . . . 5
|
| 27 | numma.5 |
. . . . . 6
| |
| 28 | 27 | nn0cni 9377 |
. . . . 5
|
| 29 | 24, 25, 26, 28 | add4i 8307 |
. . . 4
|
| 30 | 23, 29 | eqtr4i 2253 |
. . 3
|
| 31 | 18, 30 | eqtr4i 2253 |
. 2
|
| 32 | numma.9 |
. . . 4
| |
| 33 | 32 | oveq2i 6011 |
. . 3
|
| 34 | numma.10 |
. . 3
| |
| 35 | 33, 34 | oveq12i 6012 |
. 2
|
| 36 | 4, 31, 35 | 3eqtr2i 2256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-rnegex 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 df-n0 9366 |
| This theorem is referenced by: nummac 9618 numadd 9620 decma 9624 |
| Copyright terms: Public domain | W3C validator |