ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numma Unicode version

Theorem numma 9617
Description: Perform a multiply-add of two decimal integers  M and  N against a fixed multiplicand  P (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1  |-  T  e. 
NN0
numma.2  |-  A  e. 
NN0
numma.3  |-  B  e. 
NN0
numma.4  |-  C  e. 
NN0
numma.5  |-  D  e. 
NN0
numma.6  |-  M  =  ( ( T  x.  A )  +  B
)
numma.7  |-  N  =  ( ( T  x.  C )  +  D
)
numma.8  |-  P  e. 
NN0
numma.9  |-  ( ( A  x.  P )  +  C )  =  E
numma.10  |-  ( ( B  x.  P )  +  D )  =  F
Assertion
Ref Expression
numma  |-  ( ( M  x.  P )  +  N )  =  ( ( T  x.  E )  +  F
)

Proof of Theorem numma
StepHypRef Expression
1 numma.6 . . . 4  |-  M  =  ( ( T  x.  A )  +  B
)
21oveq1i 6010 . . 3  |-  ( M  x.  P )  =  ( ( ( T  x.  A )  +  B )  x.  P
)
3 numma.7 . . 3  |-  N  =  ( ( T  x.  C )  +  D
)
42, 3oveq12i 6012 . 2  |-  ( ( M  x.  P )  +  N )  =  ( ( ( ( T  x.  A )  +  B )  x.  P )  +  ( ( T  x.  C
)  +  D ) )
5 numma.1 . . . . . . 7  |-  T  e. 
NN0
65nn0cni 9377 . . . . . 6  |-  T  e.  CC
7 numma.2 . . . . . . . 8  |-  A  e. 
NN0
87nn0cni 9377 . . . . . . 7  |-  A  e.  CC
9 numma.8 . . . . . . . 8  |-  P  e. 
NN0
109nn0cni 9377 . . . . . . 7  |-  P  e.  CC
118, 10mulcli 8147 . . . . . 6  |-  ( A  x.  P )  e.  CC
12 numma.4 . . . . . . 7  |-  C  e. 
NN0
1312nn0cni 9377 . . . . . 6  |-  C  e.  CC
146, 11, 13adddii 8152 . . . . 5  |-  ( T  x.  ( ( A  x.  P )  +  C ) )  =  ( ( T  x.  ( A  x.  P
) )  +  ( T  x.  C ) )
156, 8, 10mulassi 8151 . . . . . 6  |-  ( ( T  x.  A )  x.  P )  =  ( T  x.  ( A  x.  P )
)
1615oveq1i 6010 . . . . 5  |-  ( ( ( T  x.  A
)  x.  P )  +  ( T  x.  C ) )  =  ( ( T  x.  ( A  x.  P
) )  +  ( T  x.  C ) )
1714, 16eqtr4i 2253 . . . 4  |-  ( T  x.  ( ( A  x.  P )  +  C ) )  =  ( ( ( T  x.  A )  x.  P )  +  ( T  x.  C ) )
1817oveq1i 6010 . . 3  |-  ( ( T  x.  ( ( A  x.  P )  +  C ) )  +  ( ( B  x.  P )  +  D ) )  =  ( ( ( ( T  x.  A )  x.  P )  +  ( T  x.  C
) )  +  ( ( B  x.  P
)  +  D ) )
196, 8mulcli 8147 . . . . . 6  |-  ( T  x.  A )  e.  CC
20 numma.3 . . . . . . 7  |-  B  e. 
NN0
2120nn0cni 9377 . . . . . 6  |-  B  e.  CC
2219, 21, 10adddiri 8153 . . . . 5  |-  ( ( ( T  x.  A
)  +  B )  x.  P )  =  ( ( ( T  x.  A )  x.  P )  +  ( B  x.  P ) )
2322oveq1i 6010 . . . 4  |-  ( ( ( ( T  x.  A )  +  B
)  x.  P )  +  ( ( T  x.  C )  +  D ) )  =  ( ( ( ( T  x.  A )  x.  P )  +  ( B  x.  P
) )  +  ( ( T  x.  C
)  +  D ) )
2419, 10mulcli 8147 . . . . 5  |-  ( ( T  x.  A )  x.  P )  e.  CC
256, 13mulcli 8147 . . . . 5  |-  ( T  x.  C )  e.  CC
2621, 10mulcli 8147 . . . . 5  |-  ( B  x.  P )  e.  CC
27 numma.5 . . . . . 6  |-  D  e. 
NN0
2827nn0cni 9377 . . . . 5  |-  D  e.  CC
2924, 25, 26, 28add4i 8307 . . . 4  |-  ( ( ( ( T  x.  A )  x.  P
)  +  ( T  x.  C ) )  +  ( ( B  x.  P )  +  D ) )  =  ( ( ( ( T  x.  A )  x.  P )  +  ( B  x.  P
) )  +  ( ( T  x.  C
)  +  D ) )
3023, 29eqtr4i 2253 . . 3  |-  ( ( ( ( T  x.  A )  +  B
)  x.  P )  +  ( ( T  x.  C )  +  D ) )  =  ( ( ( ( T  x.  A )  x.  P )  +  ( T  x.  C
) )  +  ( ( B  x.  P
)  +  D ) )
3118, 30eqtr4i 2253 . 2  |-  ( ( T  x.  ( ( A  x.  P )  +  C ) )  +  ( ( B  x.  P )  +  D ) )  =  ( ( ( ( T  x.  A )  +  B )  x.  P )  +  ( ( T  x.  C
)  +  D ) )
32 numma.9 . . . 4  |-  ( ( A  x.  P )  +  C )  =  E
3332oveq2i 6011 . . 3  |-  ( T  x.  ( ( A  x.  P )  +  C ) )  =  ( T  x.  E
)
34 numma.10 . . 3  |-  ( ( B  x.  P )  +  D )  =  F
3533, 34oveq12i 6012 . 2  |-  ( ( T  x.  ( ( A  x.  P )  +  C ) )  +  ( ( B  x.  P )  +  D ) )  =  ( ( T  x.  E )  +  F
)
364, 31, 353eqtr2i 2256 1  |-  ( ( M  x.  P )  +  N )  =  ( ( T  x.  E )  +  F
)
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200  (class class class)co 6000    + caddc 7998    x. cmul 8000   NN0cn0 9365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4201  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-rnegex 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003  df-inn 9107  df-n0 9366
This theorem is referenced by:  nummac  9618  numadd  9620  decma  9624
  Copyright terms: Public domain W3C validator