| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > numma | Unicode version | ||
| Description: Perform a multiply-add of
two decimal integers |
| Ref | Expression |
|---|---|
| numma.1 |
|
| numma.2 |
|
| numma.3 |
|
| numma.4 |
|
| numma.5 |
|
| numma.6 |
|
| numma.7 |
|
| numma.8 |
|
| numma.9 |
|
| numma.10 |
|
| Ref | Expression |
|---|---|
| numma |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numma.6 |
. . . 4
| |
| 2 | 1 | oveq1i 5977 |
. . 3
|
| 3 | numma.7 |
. . 3
| |
| 4 | 2, 3 | oveq12i 5979 |
. 2
|
| 5 | numma.1 |
. . . . . . 7
| |
| 6 | 5 | nn0cni 9342 |
. . . . . 6
|
| 7 | numma.2 |
. . . . . . . 8
| |
| 8 | 7 | nn0cni 9342 |
. . . . . . 7
|
| 9 | numma.8 |
. . . . . . . 8
| |
| 10 | 9 | nn0cni 9342 |
. . . . . . 7
|
| 11 | 8, 10 | mulcli 8112 |
. . . . . 6
|
| 12 | numma.4 |
. . . . . . 7
| |
| 13 | 12 | nn0cni 9342 |
. . . . . 6
|
| 14 | 6, 11, 13 | adddii 8117 |
. . . . 5
|
| 15 | 6, 8, 10 | mulassi 8116 |
. . . . . 6
|
| 16 | 15 | oveq1i 5977 |
. . . . 5
|
| 17 | 14, 16 | eqtr4i 2231 |
. . . 4
|
| 18 | 17 | oveq1i 5977 |
. . 3
|
| 19 | 6, 8 | mulcli 8112 |
. . . . . 6
|
| 20 | numma.3 |
. . . . . . 7
| |
| 21 | 20 | nn0cni 9342 |
. . . . . 6
|
| 22 | 19, 21, 10 | adddiri 8118 |
. . . . 5
|
| 23 | 22 | oveq1i 5977 |
. . . 4
|
| 24 | 19, 10 | mulcli 8112 |
. . . . 5
|
| 25 | 6, 13 | mulcli 8112 |
. . . . 5
|
| 26 | 21, 10 | mulcli 8112 |
. . . . 5
|
| 27 | numma.5 |
. . . . . 6
| |
| 28 | 27 | nn0cni 9342 |
. . . . 5
|
| 29 | 24, 25, 26, 28 | add4i 8272 |
. . . 4
|
| 30 | 23, 29 | eqtr4i 2231 |
. . 3
|
| 31 | 18, 30 | eqtr4i 2231 |
. 2
|
| 32 | numma.9 |
. . . 4
| |
| 33 | 32 | oveq2i 5978 |
. . 3
|
| 34 | numma.10 |
. . 3
| |
| 35 | 33, 34 | oveq12i 5979 |
. 2
|
| 36 | 4, 31, 35 | 3eqtr2i 2234 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-rnegex 8069 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 df-n0 9331 |
| This theorem is referenced by: nummac 9583 numadd 9585 decma 9589 |
| Copyright terms: Public domain | W3C validator |