![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > numma | Unicode version |
Description: Perform a multiply-add of
two decimal integers ![]() ![]() ![]() |
Ref | Expression |
---|---|
numma.1 |
![]() ![]() ![]() ![]() |
numma.2 |
![]() ![]() ![]() ![]() |
numma.3 |
![]() ![]() ![]() ![]() |
numma.4 |
![]() ![]() ![]() ![]() |
numma.5 |
![]() ![]() ![]() ![]() |
numma.6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
numma.7 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
numma.8 |
![]() ![]() ![]() ![]() |
numma.9 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
numma.10 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
numma |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma.6 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | oveq1i 5885 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | numma.7 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | oveq12i 5887 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | numma.1 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
6 | 5 | nn0cni 9188 |
. . . . . 6
![]() ![]() ![]() ![]() |
7 | numma.2 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
8 | 7 | nn0cni 9188 |
. . . . . . 7
![]() ![]() ![]() ![]() |
9 | numma.8 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
10 | 9 | nn0cni 9188 |
. . . . . . 7
![]() ![]() ![]() ![]() |
11 | 8, 10 | mulcli 7962 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | numma.4 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
13 | 12 | nn0cni 9188 |
. . . . . 6
![]() ![]() ![]() ![]() |
14 | 6, 11, 13 | adddii 7967 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 6, 8, 10 | mulassi 7966 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 15 | oveq1i 5885 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 14, 16 | eqtr4i 2201 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 17 | oveq1i 5885 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 6, 8 | mulcli 7962 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | numma.3 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
21 | 20 | nn0cni 9188 |
. . . . . 6
![]() ![]() ![]() ![]() |
22 | 19, 21, 10 | adddiri 7968 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 22 | oveq1i 5885 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 19, 10 | mulcli 7962 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 6, 13 | mulcli 7962 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 21, 10 | mulcli 7962 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | numma.5 |
. . . . . 6
![]() ![]() ![]() ![]() | |
28 | 27 | nn0cni 9188 |
. . . . 5
![]() ![]() ![]() ![]() |
29 | 24, 25, 26, 28 | add4i 8122 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | 23, 29 | eqtr4i 2201 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 18, 30 | eqtr4i 2201 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | numma.9 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
33 | 32 | oveq2i 5886 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | numma.10 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
35 | 33, 34 | oveq12i 5887 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 4, 31, 35 | 3eqtr2i 2204 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-sep 4122 ax-cnex 7902 ax-resscn 7903 ax-1re 7905 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-rnegex 7920 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2740 df-un 3134 df-in 3136 df-ss 3143 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-br 4005 df-iota 5179 df-fv 5225 df-ov 5878 df-inn 8920 df-n0 9177 |
This theorem is referenced by: nummac 9428 numadd 9430 decma 9434 |
Copyright terms: Public domain | W3C validator |