ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numma Unicode version

Theorem numma 9582
Description: Perform a multiply-add of two decimal integers  M and  N against a fixed multiplicand  P (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1  |-  T  e. 
NN0
numma.2  |-  A  e. 
NN0
numma.3  |-  B  e. 
NN0
numma.4  |-  C  e. 
NN0
numma.5  |-  D  e. 
NN0
numma.6  |-  M  =  ( ( T  x.  A )  +  B
)
numma.7  |-  N  =  ( ( T  x.  C )  +  D
)
numma.8  |-  P  e. 
NN0
numma.9  |-  ( ( A  x.  P )  +  C )  =  E
numma.10  |-  ( ( B  x.  P )  +  D )  =  F
Assertion
Ref Expression
numma  |-  ( ( M  x.  P )  +  N )  =  ( ( T  x.  E )  +  F
)

Proof of Theorem numma
StepHypRef Expression
1 numma.6 . . . 4  |-  M  =  ( ( T  x.  A )  +  B
)
21oveq1i 5977 . . 3  |-  ( M  x.  P )  =  ( ( ( T  x.  A )  +  B )  x.  P
)
3 numma.7 . . 3  |-  N  =  ( ( T  x.  C )  +  D
)
42, 3oveq12i 5979 . 2  |-  ( ( M  x.  P )  +  N )  =  ( ( ( ( T  x.  A )  +  B )  x.  P )  +  ( ( T  x.  C
)  +  D ) )
5 numma.1 . . . . . . 7  |-  T  e. 
NN0
65nn0cni 9342 . . . . . 6  |-  T  e.  CC
7 numma.2 . . . . . . . 8  |-  A  e. 
NN0
87nn0cni 9342 . . . . . . 7  |-  A  e.  CC
9 numma.8 . . . . . . . 8  |-  P  e. 
NN0
109nn0cni 9342 . . . . . . 7  |-  P  e.  CC
118, 10mulcli 8112 . . . . . 6  |-  ( A  x.  P )  e.  CC
12 numma.4 . . . . . . 7  |-  C  e. 
NN0
1312nn0cni 9342 . . . . . 6  |-  C  e.  CC
146, 11, 13adddii 8117 . . . . 5  |-  ( T  x.  ( ( A  x.  P )  +  C ) )  =  ( ( T  x.  ( A  x.  P
) )  +  ( T  x.  C ) )
156, 8, 10mulassi 8116 . . . . . 6  |-  ( ( T  x.  A )  x.  P )  =  ( T  x.  ( A  x.  P )
)
1615oveq1i 5977 . . . . 5  |-  ( ( ( T  x.  A
)  x.  P )  +  ( T  x.  C ) )  =  ( ( T  x.  ( A  x.  P
) )  +  ( T  x.  C ) )
1714, 16eqtr4i 2231 . . . 4  |-  ( T  x.  ( ( A  x.  P )  +  C ) )  =  ( ( ( T  x.  A )  x.  P )  +  ( T  x.  C ) )
1817oveq1i 5977 . . 3  |-  ( ( T  x.  ( ( A  x.  P )  +  C ) )  +  ( ( B  x.  P )  +  D ) )  =  ( ( ( ( T  x.  A )  x.  P )  +  ( T  x.  C
) )  +  ( ( B  x.  P
)  +  D ) )
196, 8mulcli 8112 . . . . . 6  |-  ( T  x.  A )  e.  CC
20 numma.3 . . . . . . 7  |-  B  e. 
NN0
2120nn0cni 9342 . . . . . 6  |-  B  e.  CC
2219, 21, 10adddiri 8118 . . . . 5  |-  ( ( ( T  x.  A
)  +  B )  x.  P )  =  ( ( ( T  x.  A )  x.  P )  +  ( B  x.  P ) )
2322oveq1i 5977 . . . 4  |-  ( ( ( ( T  x.  A )  +  B
)  x.  P )  +  ( ( T  x.  C )  +  D ) )  =  ( ( ( ( T  x.  A )  x.  P )  +  ( B  x.  P
) )  +  ( ( T  x.  C
)  +  D ) )
2419, 10mulcli 8112 . . . . 5  |-  ( ( T  x.  A )  x.  P )  e.  CC
256, 13mulcli 8112 . . . . 5  |-  ( T  x.  C )  e.  CC
2621, 10mulcli 8112 . . . . 5  |-  ( B  x.  P )  e.  CC
27 numma.5 . . . . . 6  |-  D  e. 
NN0
2827nn0cni 9342 . . . . 5  |-  D  e.  CC
2924, 25, 26, 28add4i 8272 . . . 4  |-  ( ( ( ( T  x.  A )  x.  P
)  +  ( T  x.  C ) )  +  ( ( B  x.  P )  +  D ) )  =  ( ( ( ( T  x.  A )  x.  P )  +  ( B  x.  P
) )  +  ( ( T  x.  C
)  +  D ) )
3023, 29eqtr4i 2231 . . 3  |-  ( ( ( ( T  x.  A )  +  B
)  x.  P )  +  ( ( T  x.  C )  +  D ) )  =  ( ( ( ( T  x.  A )  x.  P )  +  ( T  x.  C
) )  +  ( ( B  x.  P
)  +  D ) )
3118, 30eqtr4i 2231 . 2  |-  ( ( T  x.  ( ( A  x.  P )  +  C ) )  +  ( ( B  x.  P )  +  D ) )  =  ( ( ( ( T  x.  A )  +  B )  x.  P )  +  ( ( T  x.  C
)  +  D ) )
32 numma.9 . . . 4  |-  ( ( A  x.  P )  +  C )  =  E
3332oveq2i 5978 . . 3  |-  ( T  x.  ( ( A  x.  P )  +  C ) )  =  ( T  x.  E
)
34 numma.10 . . 3  |-  ( ( B  x.  P )  +  D )  =  F
3533, 34oveq12i 5979 . 2  |-  ( ( T  x.  ( ( A  x.  P )  +  C ) )  +  ( ( B  x.  P )  +  D ) )  =  ( ( T  x.  E )  +  F
)
364, 31, 353eqtr2i 2234 1  |-  ( ( M  x.  P )  +  N )  =  ( ( T  x.  E )  +  F
)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178  (class class class)co 5967    + caddc 7963    x. cmul 7965   NN0cn0 9330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-rnegex 8069
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-inn 9072  df-n0 9331
This theorem is referenced by:  nummac  9583  numadd  9585  decma  9589
  Copyright terms: Public domain W3C validator