| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > numma | Unicode version | ||
| Description: Perform a multiply-add of
two decimal integers |
| Ref | Expression |
|---|---|
| numma.1 |
|
| numma.2 |
|
| numma.3 |
|
| numma.4 |
|
| numma.5 |
|
| numma.6 |
|
| numma.7 |
|
| numma.8 |
|
| numma.9 |
|
| numma.10 |
|
| Ref | Expression |
|---|---|
| numma |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numma.6 |
. . . 4
| |
| 2 | 1 | oveq1i 5944 |
. . 3
|
| 3 | numma.7 |
. . 3
| |
| 4 | 2, 3 | oveq12i 5946 |
. 2
|
| 5 | numma.1 |
. . . . . . 7
| |
| 6 | 5 | nn0cni 9289 |
. . . . . 6
|
| 7 | numma.2 |
. . . . . . . 8
| |
| 8 | 7 | nn0cni 9289 |
. . . . . . 7
|
| 9 | numma.8 |
. . . . . . . 8
| |
| 10 | 9 | nn0cni 9289 |
. . . . . . 7
|
| 11 | 8, 10 | mulcli 8059 |
. . . . . 6
|
| 12 | numma.4 |
. . . . . . 7
| |
| 13 | 12 | nn0cni 9289 |
. . . . . 6
|
| 14 | 6, 11, 13 | adddii 8064 |
. . . . 5
|
| 15 | 6, 8, 10 | mulassi 8063 |
. . . . . 6
|
| 16 | 15 | oveq1i 5944 |
. . . . 5
|
| 17 | 14, 16 | eqtr4i 2228 |
. . . 4
|
| 18 | 17 | oveq1i 5944 |
. . 3
|
| 19 | 6, 8 | mulcli 8059 |
. . . . . 6
|
| 20 | numma.3 |
. . . . . . 7
| |
| 21 | 20 | nn0cni 9289 |
. . . . . 6
|
| 22 | 19, 21, 10 | adddiri 8065 |
. . . . 5
|
| 23 | 22 | oveq1i 5944 |
. . . 4
|
| 24 | 19, 10 | mulcli 8059 |
. . . . 5
|
| 25 | 6, 13 | mulcli 8059 |
. . . . 5
|
| 26 | 21, 10 | mulcli 8059 |
. . . . 5
|
| 27 | numma.5 |
. . . . . 6
| |
| 28 | 27 | nn0cni 9289 |
. . . . 5
|
| 29 | 24, 25, 26, 28 | add4i 8219 |
. . . 4
|
| 30 | 23, 29 | eqtr4i 2228 |
. . 3
|
| 31 | 18, 30 | eqtr4i 2228 |
. 2
|
| 32 | numma.9 |
. . . 4
| |
| 33 | 32 | oveq2i 5945 |
. . 3
|
| 34 | numma.10 |
. . 3
| |
| 35 | 33, 34 | oveq12i 5946 |
. 2
|
| 36 | 4, 31, 35 | 3eqtr2i 2231 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-rnegex 8016 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-iota 5229 df-fv 5276 df-ov 5937 df-inn 9019 df-n0 9278 |
| This theorem is referenced by: nummac 9530 numadd 9532 decma 9536 |
| Copyright terms: Public domain | W3C validator |