Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3dvds2dec | Unicode version |
Description: A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if , and actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers , and . (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
3dvdsdec.a | |
3dvdsdec.b | |
3dvds2dec.c |
Ref | Expression |
---|---|
3dvds2dec | ;; |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3dvdsdec.a | . . . . 5 | |
2 | 3dvdsdec.b | . . . . 5 | |
3 | 1, 2 | 3dec 10648 | . . . 4 ;; ; ; |
4 | sq10e99m1 10647 | . . . . . . . 8 ; ; | |
5 | 4 | oveq1i 5863 | . . . . . . 7 ; ; |
6 | 9nn0 9159 | . . . . . . . . . 10 | |
7 | 6, 6 | deccl 9357 | . . . . . . . . 9 ; |
8 | 7 | nn0cni 9147 | . . . . . . . 8 ; |
9 | ax-1cn 7867 | . . . . . . . 8 | |
10 | 1 | nn0cni 9147 | . . . . . . . 8 |
11 | 8, 9, 10 | adddiri 7931 | . . . . . . 7 ; ; |
12 | 10 | mulid2i 7923 | . . . . . . . 8 |
13 | 12 | oveq2i 5864 | . . . . . . 7 ; ; |
14 | 5, 11, 13 | 3eqtri 2195 | . . . . . 6 ; ; |
15 | 9p1e10 9345 | . . . . . . . . 9 ; | |
16 | 15 | eqcomi 2174 | . . . . . . . 8 ; |
17 | 16 | oveq1i 5863 | . . . . . . 7 ; |
18 | 9cn 8966 | . . . . . . . 8 | |
19 | 2 | nn0cni 9147 | . . . . . . . 8 |
20 | 18, 9, 19 | adddiri 7931 | . . . . . . 7 |
21 | 19 | mulid2i 7923 | . . . . . . . 8 |
22 | 21 | oveq2i 5864 | . . . . . . 7 |
23 | 17, 20, 22 | 3eqtri 2195 | . . . . . 6 ; |
24 | 14, 23 | oveq12i 5865 | . . . . 5 ; ; ; |
25 | 24 | oveq1i 5863 | . . . 4 ; ; ; |
26 | 8, 10 | mulcli 7925 | . . . . . 6 ; |
27 | 18, 19 | mulcli 7925 | . . . . . 6 |
28 | add4 8080 | . . . . . . 7 ; ; ; | |
29 | 28 | oveq1d 5868 | . . . . . 6 ; ; ; |
30 | 26, 10, 27, 19, 29 | mp4an 425 | . . . . 5 ; ; |
31 | 26, 27 | addcli 7924 | . . . . . 6 ; |
32 | 10, 19 | addcli 7924 | . . . . . 6 |
33 | 3dvds2dec.c | . . . . . . 7 | |
34 | 33 | nn0cni 9147 | . . . . . 6 |
35 | 31, 32, 34 | addassi 7928 | . . . . 5 ; ; |
36 | 9t11e99 9472 | . . . . . . . . . . 11 ; ; | |
37 | 36 | eqcomi 2174 | . . . . . . . . . 10 ; ; |
38 | 37 | oveq1i 5863 | . . . . . . . . 9 ; ; |
39 | 1nn0 9151 | . . . . . . . . . . . 12 | |
40 | 39, 39 | deccl 9357 | . . . . . . . . . . 11 ; |
41 | 40 | nn0cni 9147 | . . . . . . . . . 10 ; |
42 | 18, 41, 10 | mulassi 7929 | . . . . . . . . 9 ; ; |
43 | 38, 42 | eqtri 2191 | . . . . . . . 8 ; ; |
44 | 43 | oveq1i 5863 | . . . . . . 7 ; ; |
45 | 41, 10 | mulcli 7925 | . . . . . . . . 9 ; |
46 | 18, 45, 19 | adddii 7930 | . . . . . . . 8 ; ; |
47 | 46 | eqcomi 2174 | . . . . . . 7 ; ; |
48 | 3t3e9 9035 | . . . . . . . . . 10 | |
49 | 48 | eqcomi 2174 | . . . . . . . . 9 |
50 | 49 | oveq1i 5863 | . . . . . . . 8 ; ; |
51 | 3cn 8953 | . . . . . . . . 9 | |
52 | 45, 19 | addcli 7924 | . . . . . . . . 9 ; |
53 | 51, 51, 52 | mulassi 7929 | . . . . . . . 8 ; ; |
54 | 50, 53 | eqtri 2191 | . . . . . . 7 ; ; |
55 | 44, 47, 54 | 3eqtri 2195 | . . . . . 6 ; ; |
56 | 55 | oveq1i 5863 | . . . . 5 ; ; |
57 | 30, 35, 56 | 3eqtri 2195 | . . . 4 ; ; |
58 | 3, 25, 57 | 3eqtri 2195 | . . 3 ;; ; |
59 | 58 | breq2i 3997 | . 2 ;; ; |
60 | 3z 9241 | . . 3 | |
61 | 1 | nn0zi 9234 | . . . . 5 |
62 | 2 | nn0zi 9234 | . . . . 5 |
63 | zaddcl 9252 | . . . . 5 | |
64 | 61, 62, 63 | mp2an 424 | . . . 4 |
65 | 33 | nn0zi 9234 | . . . 4 |
66 | zaddcl 9252 | . . . 4 | |
67 | 64, 65, 66 | mp2an 424 | . . 3 |
68 | 40 | nn0zi 9234 | . . . . . . . 8 ; |
69 | zmulcl 9265 | . . . . . . . 8 ; ; | |
70 | 68, 61, 69 | mp2an 424 | . . . . . . 7 ; |
71 | zaddcl 9252 | . . . . . . 7 ; ; | |
72 | 70, 62, 71 | mp2an 424 | . . . . . 6 ; |
73 | zmulcl 9265 | . . . . . 6 ; ; | |
74 | 60, 72, 73 | mp2an 424 | . . . . 5 ; |
75 | zmulcl 9265 | . . . . 5 ; ; | |
76 | 60, 74, 75 | mp2an 424 | . . . 4 ; |
77 | dvdsmul1 11775 | . . . . 5 ; ; | |
78 | 60, 74, 77 | mp2an 424 | . . . 4 ; |
79 | 76, 78 | pm3.2i 270 | . . 3 ; ; |
80 | dvdsadd2b 11802 | . . 3 ; ; ; | |
81 | 60, 67, 79, 80 | mp3an 1332 | . 2 ; |
82 | 59, 81 | bitr4i 186 | 1 ;; |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wcel 2141 class class class wbr 3989 (class class class)co 5853 cc 7772 cc0 7774 c1 7775 caddc 7777 cmul 7779 c2 8929 c3 8930 c9 8936 cn0 9135 cz 9212 ;cdc 9343 cexp 10475 cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-n0 9136 df-z 9213 df-dec 9344 df-uz 9488 df-seqfrec 10402 df-exp 10476 df-dvds 11750 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |