ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3dvds2dec Unicode version

Theorem 3dvds2dec 12048
Description: A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if  A,  B and  C actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers  A,  B and  C. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dvdsdec.a  |-  A  e. 
NN0
3dvdsdec.b  |-  B  e. 
NN0
3dvds2dec.c  |-  C  e. 
NN0
Assertion
Ref Expression
3dvds2dec  |-  ( 3 
|| ;; A B C  <->  3  ||  ( ( A  +  B )  +  C
) )

Proof of Theorem 3dvds2dec
StepHypRef Expression
1 3dvdsdec.a . . . . 5  |-  A  e. 
NN0
2 3dvdsdec.b . . . . 5  |-  B  e. 
NN0
31, 23dec 10823 . . . 4  |- ;; A B C  =  (
( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)
4 sq10e99m1 10822 . . . . . . . 8  |-  (; 1 0 ^ 2 )  =  (; 9 9  +  1 )
54oveq1i 5935 . . . . . . 7  |-  ( (; 1
0 ^ 2 )  x.  A )  =  ( (; 9 9  +  1 )  x.  A )
6 9nn0 9290 . . . . . . . . . 10  |-  9  e.  NN0
76, 6deccl 9488 . . . . . . . . 9  |- ; 9 9  e.  NN0
87nn0cni 9278 . . . . . . . 8  |- ; 9 9  e.  CC
9 ax-1cn 7989 . . . . . . . 8  |-  1  e.  CC
101nn0cni 9278 . . . . . . . 8  |-  A  e.  CC
118, 9, 10adddiri 8054 . . . . . . 7  |-  ( (; 9
9  +  1 )  x.  A )  =  ( (; 9 9  x.  A
)  +  ( 1  x.  A ) )
1210mullidi 8046 . . . . . . . 8  |-  ( 1  x.  A )  =  A
1312oveq2i 5936 . . . . . . 7  |-  ( (; 9
9  x.  A )  +  ( 1  x.  A ) )  =  ( (; 9 9  x.  A
)  +  A )
145, 11, 133eqtri 2221 . . . . . 6  |-  ( (; 1
0 ^ 2 )  x.  A )  =  ( (; 9 9  x.  A
)  +  A )
15 9p1e10 9476 . . . . . . . . 9  |-  ( 9  +  1 )  = ; 1
0
1615eqcomi 2200 . . . . . . . 8  |- ; 1 0  =  ( 9  +  1 )
1716oveq1i 5935 . . . . . . 7  |-  (; 1 0  x.  B
)  =  ( ( 9  +  1 )  x.  B )
18 9cn 9095 . . . . . . . 8  |-  9  e.  CC
192nn0cni 9278 . . . . . . . 8  |-  B  e.  CC
2018, 9, 19adddiri 8054 . . . . . . 7  |-  ( ( 9  +  1 )  x.  B )  =  ( ( 9  x.  B )  +  ( 1  x.  B ) )
2119mullidi 8046 . . . . . . . 8  |-  ( 1  x.  B )  =  B
2221oveq2i 5936 . . . . . . 7  |-  ( ( 9  x.  B )  +  ( 1  x.  B ) )  =  ( ( 9  x.  B )  +  B
)
2317, 20, 223eqtri 2221 . . . . . 6  |-  (; 1 0  x.  B
)  =  ( ( 9  x.  B )  +  B )
2414, 23oveq12i 5937 . . . . 5  |-  ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  =  ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )
2524oveq1i 5935 . . . 4  |-  ( ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)  =  ( ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )
268, 10mulcli 8048 . . . . . 6  |-  (; 9 9  x.  A
)  e.  CC
2718, 19mulcli 8048 . . . . . 6  |-  ( 9  x.  B )  e.  CC
28 add4 8204 . . . . . . 7  |-  ( ( ( (; 9 9  x.  A
)  e.  CC  /\  A  e.  CC )  /\  ( ( 9  x.  B )  e.  CC  /\  B  e.  CC ) )  ->  ( (
(; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  =  ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) ) )
2928oveq1d 5940 . . . . . 6  |-  ( ( ( (; 9 9  x.  A
)  e.  CC  /\  A  e.  CC )  /\  ( ( 9  x.  B )  e.  CC  /\  B  e.  CC ) )  ->  ( (
( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )  =  ( ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) )  +  C ) )
3026, 10, 27, 19, 29mp4an 427 . . . . 5  |-  ( ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )  =  ( ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) )  +  C )
3126, 27addcli 8047 . . . . . 6  |-  ( (; 9
9  x.  A )  +  ( 9  x.  B ) )  e.  CC
3210, 19addcli 8047 . . . . . 6  |-  ( A  +  B )  e.  CC
33 3dvds2dec.c . . . . . . 7  |-  C  e. 
NN0
3433nn0cni 9278 . . . . . 6  |-  C  e.  CC
3531, 32, 34addassi 8051 . . . . 5  |-  ( ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) )  +  C )  =  ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( ( A  +  B )  +  C ) )
36 9t11e99 9603 . . . . . . . . . . 11  |-  ( 9  x. ; 1 1 )  = ; 9
9
3736eqcomi 2200 . . . . . . . . . 10  |- ; 9 9  =  ( 9  x. ; 1 1 )
3837oveq1i 5935 . . . . . . . . 9  |-  (; 9 9  x.  A
)  =  ( ( 9  x. ; 1 1 )  x.  A )
39 1nn0 9282 . . . . . . . . . . . 12  |-  1  e.  NN0
4039, 39deccl 9488 . . . . . . . . . . 11  |- ; 1 1  e.  NN0
4140nn0cni 9278 . . . . . . . . . 10  |- ; 1 1  e.  CC
4218, 41, 10mulassi 8052 . . . . . . . . 9  |-  ( ( 9  x. ; 1 1 )  x.  A )  =  ( 9  x.  (; 1 1  x.  A
) )
4338, 42eqtri 2217 . . . . . . . 8  |-  (; 9 9  x.  A
)  =  ( 9  x.  (; 1 1  x.  A
) )
4443oveq1i 5935 . . . . . . 7  |-  ( (; 9
9  x.  A )  +  ( 9  x.  B ) )  =  ( ( 9  x.  (; 1 1  x.  A
) )  +  ( 9  x.  B ) )
4541, 10mulcli 8048 . . . . . . . . 9  |-  (; 1 1  x.  A
)  e.  CC
4618, 45, 19adddii 8053 . . . . . . . 8  |-  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( ( 9  x.  (; 1 1  x.  A
) )  +  ( 9  x.  B ) )
4746eqcomi 2200 . . . . . . 7  |-  ( ( 9  x.  (; 1 1  x.  A
) )  +  ( 9  x.  B ) )  =  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )
48 3t3e9 9165 . . . . . . . . . 10  |-  ( 3  x.  3 )  =  9
4948eqcomi 2200 . . . . . . . . 9  |-  9  =  ( 3  x.  3 )
5049oveq1i 5935 . . . . . . . 8  |-  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( ( 3  x.  3 )  x.  ( (; 1 1  x.  A
)  +  B ) )
51 3cn 9082 . . . . . . . . 9  |-  3  e.  CC
5245, 19addcli 8047 . . . . . . . . 9  |-  ( (; 1
1  x.  A )  +  B )  e.  CC
5351, 51, 52mulassi 8052 . . . . . . . 8  |-  ( ( 3  x.  3 )  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )
5450, 53eqtri 2217 . . . . . . 7  |-  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )
5544, 47, 543eqtri 2221 . . . . . 6  |-  ( (; 9
9  x.  A )  +  ( 9  x.  B ) )  =  ( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )
5655oveq1i 5935 . . . . 5  |-  ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( ( A  +  B )  +  C ) )  =  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  +  ( ( A  +  B
)  +  C ) )
5730, 35, 563eqtri 2221 . . . 4  |-  ( ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )  =  ( ( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )  +  ( ( A  +  B )  +  C ) )
583, 25, 573eqtri 2221 . . 3  |- ;; A B C  =  (
( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )  +  ( ( A  +  B )  +  C ) )
5958breq2i 4042 . 2  |-  ( 3 
|| ;; A B C  <->  3  ||  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  +  ( ( A  +  B
)  +  C ) ) )
60 3z 9372 . . 3  |-  3  e.  ZZ
611nn0zi 9365 . . . . 5  |-  A  e.  ZZ
622nn0zi 9365 . . . . 5  |-  B  e.  ZZ
63 zaddcl 9383 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  ZZ )
6461, 62, 63mp2an 426 . . . 4  |-  ( A  +  B )  e.  ZZ
6533nn0zi 9365 . . . 4  |-  C  e.  ZZ
66 zaddcl 9383 . . . 4  |-  ( ( ( A  +  B
)  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( A  +  B )  +  C
)  e.  ZZ )
6764, 65, 66mp2an 426 . . 3  |-  ( ( A  +  B )  +  C )  e.  ZZ
6840nn0zi 9365 . . . . . . . 8  |- ; 1 1  e.  ZZ
69 zmulcl 9396 . . . . . . . 8  |-  ( (; 1
1  e.  ZZ  /\  A  e.  ZZ )  ->  (; 1 1  x.  A
)  e.  ZZ )
7068, 61, 69mp2an 426 . . . . . . 7  |-  (; 1 1  x.  A
)  e.  ZZ
71 zaddcl 9383 . . . . . . 7  |-  ( ( (; 1 1  x.  A
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( (; 1 1  x.  A
)  +  B )  e.  ZZ )
7270, 62, 71mp2an 426 . . . . . 6  |-  ( (; 1
1  x.  A )  +  B )  e.  ZZ
73 zmulcl 9396 . . . . . 6  |-  ( ( 3  e.  ZZ  /\  ( (; 1 1  x.  A
)  +  B )  e.  ZZ )  -> 
( 3  x.  (
(; 1 1  x.  A
)  +  B ) )  e.  ZZ )
7460, 72, 73mp2an 426 . . . . 5  |-  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) )  e.  ZZ
75 zmulcl 9396 . . . . 5  |-  ( ( 3  e.  ZZ  /\  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) )  e.  ZZ )  ->  ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  e.  ZZ )
7660, 74, 75mp2an 426 . . . 4  |-  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )  e.  ZZ
77 dvdsmul1 11995 . . . . 5  |-  ( ( 3  e.  ZZ  /\  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) )  e.  ZZ )  ->  3  ||  (
3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) ) )
7860, 74, 77mp2an 426 . . . 4  |-  3  ||  ( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )
7976, 78pm3.2i 272 . . 3  |-  ( ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )  e.  ZZ  /\  3  ||  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) ) )
80 dvdsadd2b 12022 . . 3  |-  ( ( 3  e.  ZZ  /\  ( ( A  +  B )  +  C
)  e.  ZZ  /\  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  e.  ZZ  /\  3  ||  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) ) ) )  ->  ( 3  ||  ( ( A  +  B )  +  C
)  <->  3  ||  (
( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )  +  ( ( A  +  B )  +  C ) ) ) )
8160, 67, 79, 80mp3an 1348 . 2  |-  ( 3 
||  ( ( A  +  B )  +  C )  <->  3  ||  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  +  ( ( A  +  B
)  +  C ) ) )
8259, 81bitr4i 187 1  |-  ( 3 
|| ;; A B C  <->  3  ||  ( ( A  +  B )  +  C
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901   2c2 9058   3c3 9059   9c9 9065   NN0cn0 9266   ZZcz 9343  ;cdc 9474   ^cexp 10647    || cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-seqfrec 10557  df-exp 10648  df-dvds 11970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator