Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3dvds2dec | Unicode version |
Description: A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if , and actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers , and . (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
3dvdsdec.a | |
3dvdsdec.b | |
3dvds2dec.c |
Ref | Expression |
---|---|
3dvds2dec | ;; |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3dvdsdec.a | . . . . 5 | |
2 | 3dvdsdec.b | . . . . 5 | |
3 | 1, 2 | 3dec 10627 | . . . 4 ;; ; ; |
4 | sq10e99m1 10626 | . . . . . . . 8 ; ; | |
5 | 4 | oveq1i 5852 | . . . . . . 7 ; ; |
6 | 9nn0 9138 | . . . . . . . . . 10 | |
7 | 6, 6 | deccl 9336 | . . . . . . . . 9 ; |
8 | 7 | nn0cni 9126 | . . . . . . . 8 ; |
9 | ax-1cn 7846 | . . . . . . . 8 | |
10 | 1 | nn0cni 9126 | . . . . . . . 8 |
11 | 8, 9, 10 | adddiri 7910 | . . . . . . 7 ; ; |
12 | 10 | mulid2i 7902 | . . . . . . . 8 |
13 | 12 | oveq2i 5853 | . . . . . . 7 ; ; |
14 | 5, 11, 13 | 3eqtri 2190 | . . . . . 6 ; ; |
15 | 9p1e10 9324 | . . . . . . . . 9 ; | |
16 | 15 | eqcomi 2169 | . . . . . . . 8 ; |
17 | 16 | oveq1i 5852 | . . . . . . 7 ; |
18 | 9cn 8945 | . . . . . . . 8 | |
19 | 2 | nn0cni 9126 | . . . . . . . 8 |
20 | 18, 9, 19 | adddiri 7910 | . . . . . . 7 |
21 | 19 | mulid2i 7902 | . . . . . . . 8 |
22 | 21 | oveq2i 5853 | . . . . . . 7 |
23 | 17, 20, 22 | 3eqtri 2190 | . . . . . 6 ; |
24 | 14, 23 | oveq12i 5854 | . . . . 5 ; ; ; |
25 | 24 | oveq1i 5852 | . . . 4 ; ; ; |
26 | 8, 10 | mulcli 7904 | . . . . . 6 ; |
27 | 18, 19 | mulcli 7904 | . . . . . 6 |
28 | add4 8059 | . . . . . . 7 ; ; ; | |
29 | 28 | oveq1d 5857 | . . . . . 6 ; ; ; |
30 | 26, 10, 27, 19, 29 | mp4an 424 | . . . . 5 ; ; |
31 | 26, 27 | addcli 7903 | . . . . . 6 ; |
32 | 10, 19 | addcli 7903 | . . . . . 6 |
33 | 3dvds2dec.c | . . . . . . 7 | |
34 | 33 | nn0cni 9126 | . . . . . 6 |
35 | 31, 32, 34 | addassi 7907 | . . . . 5 ; ; |
36 | 9t11e99 9451 | . . . . . . . . . . 11 ; ; | |
37 | 36 | eqcomi 2169 | . . . . . . . . . 10 ; ; |
38 | 37 | oveq1i 5852 | . . . . . . . . 9 ; ; |
39 | 1nn0 9130 | . . . . . . . . . . . 12 | |
40 | 39, 39 | deccl 9336 | . . . . . . . . . . 11 ; |
41 | 40 | nn0cni 9126 | . . . . . . . . . 10 ; |
42 | 18, 41, 10 | mulassi 7908 | . . . . . . . . 9 ; ; |
43 | 38, 42 | eqtri 2186 | . . . . . . . 8 ; ; |
44 | 43 | oveq1i 5852 | . . . . . . 7 ; ; |
45 | 41, 10 | mulcli 7904 | . . . . . . . . 9 ; |
46 | 18, 45, 19 | adddii 7909 | . . . . . . . 8 ; ; |
47 | 46 | eqcomi 2169 | . . . . . . 7 ; ; |
48 | 3t3e9 9014 | . . . . . . . . . 10 | |
49 | 48 | eqcomi 2169 | . . . . . . . . 9 |
50 | 49 | oveq1i 5852 | . . . . . . . 8 ; ; |
51 | 3cn 8932 | . . . . . . . . 9 | |
52 | 45, 19 | addcli 7903 | . . . . . . . . 9 ; |
53 | 51, 51, 52 | mulassi 7908 | . . . . . . . 8 ; ; |
54 | 50, 53 | eqtri 2186 | . . . . . . 7 ; ; |
55 | 44, 47, 54 | 3eqtri 2190 | . . . . . 6 ; ; |
56 | 55 | oveq1i 5852 | . . . . 5 ; ; |
57 | 30, 35, 56 | 3eqtri 2190 | . . . 4 ; ; |
58 | 3, 25, 57 | 3eqtri 2190 | . . 3 ;; ; |
59 | 58 | breq2i 3990 | . 2 ;; ; |
60 | 3z 9220 | . . 3 | |
61 | 1 | nn0zi 9213 | . . . . 5 |
62 | 2 | nn0zi 9213 | . . . . 5 |
63 | zaddcl 9231 | . . . . 5 | |
64 | 61, 62, 63 | mp2an 423 | . . . 4 |
65 | 33 | nn0zi 9213 | . . . 4 |
66 | zaddcl 9231 | . . . 4 | |
67 | 64, 65, 66 | mp2an 423 | . . 3 |
68 | 40 | nn0zi 9213 | . . . . . . . 8 ; |
69 | zmulcl 9244 | . . . . . . . 8 ; ; | |
70 | 68, 61, 69 | mp2an 423 | . . . . . . 7 ; |
71 | zaddcl 9231 | . . . . . . 7 ; ; | |
72 | 70, 62, 71 | mp2an 423 | . . . . . 6 ; |
73 | zmulcl 9244 | . . . . . 6 ; ; | |
74 | 60, 72, 73 | mp2an 423 | . . . . 5 ; |
75 | zmulcl 9244 | . . . . 5 ; ; | |
76 | 60, 74, 75 | mp2an 423 | . . . 4 ; |
77 | dvdsmul1 11753 | . . . . 5 ; ; | |
78 | 60, 74, 77 | mp2an 423 | . . . 4 ; |
79 | 76, 78 | pm3.2i 270 | . . 3 ; ; |
80 | dvdsadd2b 11780 | . . 3 ; ; ; | |
81 | 60, 67, 79, 80 | mp3an 1327 | . 2 ; |
82 | 59, 81 | bitr4i 186 | 1 ;; |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wcel 2136 class class class wbr 3982 (class class class)co 5842 cc 7751 cc0 7753 c1 7754 caddc 7756 cmul 7758 c2 8908 c3 8909 c9 8915 cn0 9114 cz 9191 ;cdc 9322 cexp 10454 cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-n0 9115 df-z 9192 df-dec 9323 df-uz 9467 df-seqfrec 10381 df-exp 10455 df-dvds 11728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |