ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3dvds2dec Unicode version

Theorem 3dvds2dec 12031
Description: A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if  A,  B and  C actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers  A,  B and  C. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dvdsdec.a  |-  A  e. 
NN0
3dvdsdec.b  |-  B  e. 
NN0
3dvds2dec.c  |-  C  e. 
NN0
Assertion
Ref Expression
3dvds2dec  |-  ( 3 
|| ;; A B C  <->  3  ||  ( ( A  +  B )  +  C
) )

Proof of Theorem 3dvds2dec
StepHypRef Expression
1 3dvdsdec.a . . . . 5  |-  A  e. 
NN0
2 3dvdsdec.b . . . . 5  |-  B  e. 
NN0
31, 23dec 10806 . . . 4  |- ;; A B C  =  (
( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)
4 sq10e99m1 10805 . . . . . . . 8  |-  (; 1 0 ^ 2 )  =  (; 9 9  +  1 )
54oveq1i 5932 . . . . . . 7  |-  ( (; 1
0 ^ 2 )  x.  A )  =  ( (; 9 9  +  1 )  x.  A )
6 9nn0 9273 . . . . . . . . . 10  |-  9  e.  NN0
76, 6deccl 9471 . . . . . . . . 9  |- ; 9 9  e.  NN0
87nn0cni 9261 . . . . . . . 8  |- ; 9 9  e.  CC
9 ax-1cn 7972 . . . . . . . 8  |-  1  e.  CC
101nn0cni 9261 . . . . . . . 8  |-  A  e.  CC
118, 9, 10adddiri 8037 . . . . . . 7  |-  ( (; 9
9  +  1 )  x.  A )  =  ( (; 9 9  x.  A
)  +  ( 1  x.  A ) )
1210mullidi 8029 . . . . . . . 8  |-  ( 1  x.  A )  =  A
1312oveq2i 5933 . . . . . . 7  |-  ( (; 9
9  x.  A )  +  ( 1  x.  A ) )  =  ( (; 9 9  x.  A
)  +  A )
145, 11, 133eqtri 2221 . . . . . 6  |-  ( (; 1
0 ^ 2 )  x.  A )  =  ( (; 9 9  x.  A
)  +  A )
15 9p1e10 9459 . . . . . . . . 9  |-  ( 9  +  1 )  = ; 1
0
1615eqcomi 2200 . . . . . . . 8  |- ; 1 0  =  ( 9  +  1 )
1716oveq1i 5932 . . . . . . 7  |-  (; 1 0  x.  B
)  =  ( ( 9  +  1 )  x.  B )
18 9cn 9078 . . . . . . . 8  |-  9  e.  CC
192nn0cni 9261 . . . . . . . 8  |-  B  e.  CC
2018, 9, 19adddiri 8037 . . . . . . 7  |-  ( ( 9  +  1 )  x.  B )  =  ( ( 9  x.  B )  +  ( 1  x.  B ) )
2119mullidi 8029 . . . . . . . 8  |-  ( 1  x.  B )  =  B
2221oveq2i 5933 . . . . . . 7  |-  ( ( 9  x.  B )  +  ( 1  x.  B ) )  =  ( ( 9  x.  B )  +  B
)
2317, 20, 223eqtri 2221 . . . . . 6  |-  (; 1 0  x.  B
)  =  ( ( 9  x.  B )  +  B )
2414, 23oveq12i 5934 . . . . 5  |-  ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  =  ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )
2524oveq1i 5932 . . . 4  |-  ( ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)  =  ( ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )
268, 10mulcli 8031 . . . . . 6  |-  (; 9 9  x.  A
)  e.  CC
2718, 19mulcli 8031 . . . . . 6  |-  ( 9  x.  B )  e.  CC
28 add4 8187 . . . . . . 7  |-  ( ( ( (; 9 9  x.  A
)  e.  CC  /\  A  e.  CC )  /\  ( ( 9  x.  B )  e.  CC  /\  B  e.  CC ) )  ->  ( (
(; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  =  ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) ) )
2928oveq1d 5937 . . . . . 6  |-  ( ( ( (; 9 9  x.  A
)  e.  CC  /\  A  e.  CC )  /\  ( ( 9  x.  B )  e.  CC  /\  B  e.  CC ) )  ->  ( (
( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )  =  ( ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) )  +  C ) )
3026, 10, 27, 19, 29mp4an 427 . . . . 5  |-  ( ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )  =  ( ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) )  +  C )
3126, 27addcli 8030 . . . . . 6  |-  ( (; 9
9  x.  A )  +  ( 9  x.  B ) )  e.  CC
3210, 19addcli 8030 . . . . . 6  |-  ( A  +  B )  e.  CC
33 3dvds2dec.c . . . . . . 7  |-  C  e. 
NN0
3433nn0cni 9261 . . . . . 6  |-  C  e.  CC
3531, 32, 34addassi 8034 . . . . 5  |-  ( ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) )  +  C )  =  ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( ( A  +  B )  +  C ) )
36 9t11e99 9586 . . . . . . . . . . 11  |-  ( 9  x. ; 1 1 )  = ; 9
9
3736eqcomi 2200 . . . . . . . . . 10  |- ; 9 9  =  ( 9  x. ; 1 1 )
3837oveq1i 5932 . . . . . . . . 9  |-  (; 9 9  x.  A
)  =  ( ( 9  x. ; 1 1 )  x.  A )
39 1nn0 9265 . . . . . . . . . . . 12  |-  1  e.  NN0
4039, 39deccl 9471 . . . . . . . . . . 11  |- ; 1 1  e.  NN0
4140nn0cni 9261 . . . . . . . . . 10  |- ; 1 1  e.  CC
4218, 41, 10mulassi 8035 . . . . . . . . 9  |-  ( ( 9  x. ; 1 1 )  x.  A )  =  ( 9  x.  (; 1 1  x.  A
) )
4338, 42eqtri 2217 . . . . . . . 8  |-  (; 9 9  x.  A
)  =  ( 9  x.  (; 1 1  x.  A
) )
4443oveq1i 5932 . . . . . . 7  |-  ( (; 9
9  x.  A )  +  ( 9  x.  B ) )  =  ( ( 9  x.  (; 1 1  x.  A
) )  +  ( 9  x.  B ) )
4541, 10mulcli 8031 . . . . . . . . 9  |-  (; 1 1  x.  A
)  e.  CC
4618, 45, 19adddii 8036 . . . . . . . 8  |-  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( ( 9  x.  (; 1 1  x.  A
) )  +  ( 9  x.  B ) )
4746eqcomi 2200 . . . . . . 7  |-  ( ( 9  x.  (; 1 1  x.  A
) )  +  ( 9  x.  B ) )  =  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )
48 3t3e9 9148 . . . . . . . . . 10  |-  ( 3  x.  3 )  =  9
4948eqcomi 2200 . . . . . . . . 9  |-  9  =  ( 3  x.  3 )
5049oveq1i 5932 . . . . . . . 8  |-  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( ( 3  x.  3 )  x.  ( (; 1 1  x.  A
)  +  B ) )
51 3cn 9065 . . . . . . . . 9  |-  3  e.  CC
5245, 19addcli 8030 . . . . . . . . 9  |-  ( (; 1
1  x.  A )  +  B )  e.  CC
5351, 51, 52mulassi 8035 . . . . . . . 8  |-  ( ( 3  x.  3 )  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )
5450, 53eqtri 2217 . . . . . . 7  |-  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )
5544, 47, 543eqtri 2221 . . . . . 6  |-  ( (; 9
9  x.  A )  +  ( 9  x.  B ) )  =  ( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )
5655oveq1i 5932 . . . . 5  |-  ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( ( A  +  B )  +  C ) )  =  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  +  ( ( A  +  B
)  +  C ) )
5730, 35, 563eqtri 2221 . . . 4  |-  ( ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )  =  ( ( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )  +  ( ( A  +  B )  +  C ) )
583, 25, 573eqtri 2221 . . 3  |- ;; A B C  =  (
( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )  +  ( ( A  +  B )  +  C ) )
5958breq2i 4041 . 2  |-  ( 3 
|| ;; A B C  <->  3  ||  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  +  ( ( A  +  B
)  +  C ) ) )
60 3z 9355 . . 3  |-  3  e.  ZZ
611nn0zi 9348 . . . . 5  |-  A  e.  ZZ
622nn0zi 9348 . . . . 5  |-  B  e.  ZZ
63 zaddcl 9366 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  ZZ )
6461, 62, 63mp2an 426 . . . 4  |-  ( A  +  B )  e.  ZZ
6533nn0zi 9348 . . . 4  |-  C  e.  ZZ
66 zaddcl 9366 . . . 4  |-  ( ( ( A  +  B
)  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( A  +  B )  +  C
)  e.  ZZ )
6764, 65, 66mp2an 426 . . 3  |-  ( ( A  +  B )  +  C )  e.  ZZ
6840nn0zi 9348 . . . . . . . 8  |- ; 1 1  e.  ZZ
69 zmulcl 9379 . . . . . . . 8  |-  ( (; 1
1  e.  ZZ  /\  A  e.  ZZ )  ->  (; 1 1  x.  A
)  e.  ZZ )
7068, 61, 69mp2an 426 . . . . . . 7  |-  (; 1 1  x.  A
)  e.  ZZ
71 zaddcl 9366 . . . . . . 7  |-  ( ( (; 1 1  x.  A
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( (; 1 1  x.  A
)  +  B )  e.  ZZ )
7270, 62, 71mp2an 426 . . . . . 6  |-  ( (; 1
1  x.  A )  +  B )  e.  ZZ
73 zmulcl 9379 . . . . . 6  |-  ( ( 3  e.  ZZ  /\  ( (; 1 1  x.  A
)  +  B )  e.  ZZ )  -> 
( 3  x.  (
(; 1 1  x.  A
)  +  B ) )  e.  ZZ )
7460, 72, 73mp2an 426 . . . . 5  |-  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) )  e.  ZZ
75 zmulcl 9379 . . . . 5  |-  ( ( 3  e.  ZZ  /\  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) )  e.  ZZ )  ->  ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  e.  ZZ )
7660, 74, 75mp2an 426 . . . 4  |-  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )  e.  ZZ
77 dvdsmul1 11978 . . . . 5  |-  ( ( 3  e.  ZZ  /\  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) )  e.  ZZ )  ->  3  ||  (
3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) ) )
7860, 74, 77mp2an 426 . . . 4  |-  3  ||  ( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )
7976, 78pm3.2i 272 . . 3  |-  ( ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )  e.  ZZ  /\  3  ||  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) ) )
80 dvdsadd2b 12005 . . 3  |-  ( ( 3  e.  ZZ  /\  ( ( A  +  B )  +  C
)  e.  ZZ  /\  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  e.  ZZ  /\  3  ||  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) ) ) )  ->  ( 3  ||  ( ( A  +  B )  +  C
)  <->  3  ||  (
( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )  +  ( ( A  +  B )  +  C ) ) ) )
8160, 67, 79, 80mp3an 1348 . 2  |-  ( 3 
||  ( ( A  +  B )  +  C )  <->  3  ||  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  +  ( ( A  +  B
)  +  C ) ) )
8259, 81bitr4i 187 1  |-  ( 3 
|| ;; A B C  <->  3  ||  ( ( A  +  B )  +  C
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   CCcc 7877   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884   2c2 9041   3c3 9042   9c9 9048   NN0cn0 9249   ZZcz 9326  ;cdc 9457   ^cexp 10630    || cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-dec 9458  df-uz 9602  df-seqfrec 10540  df-exp 10631  df-dvds 11953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator