| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3dvds2dec | Unicode version | ||
| Description: A decimal number is
divisible by three iff the sum of its three "digits"
is divisible by three. The term "digits" in its narrow sense
is only
correct if |
| Ref | Expression |
|---|---|
| 3dvdsdec.a |
|
| 3dvdsdec.b |
|
| 3dvds2dec.c |
|
| Ref | Expression |
|---|---|
| 3dvds2dec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3dvdsdec.a |
. . . . 5
| |
| 2 | 3dvdsdec.b |
. . . . 5
| |
| 3 | 1, 2 | 3dec 10931 |
. . . 4
|
| 4 | sq10e99m1 10930 |
. . . . . . . 8
| |
| 5 | 4 | oveq1i 6010 |
. . . . . . 7
|
| 6 | 9nn0 9389 |
. . . . . . . . . 10
| |
| 7 | 6, 6 | deccl 9588 |
. . . . . . . . 9
|
| 8 | 7 | nn0cni 9377 |
. . . . . . . 8
|
| 9 | ax-1cn 8088 |
. . . . . . . 8
| |
| 10 | 1 | nn0cni 9377 |
. . . . . . . 8
|
| 11 | 8, 9, 10 | adddiri 8153 |
. . . . . . 7
|
| 12 | 10 | mullidi 8145 |
. . . . . . . 8
|
| 13 | 12 | oveq2i 6011 |
. . . . . . 7
|
| 14 | 5, 11, 13 | 3eqtri 2254 |
. . . . . 6
|
| 15 | 9p1e10 9576 |
. . . . . . . . 9
| |
| 16 | 15 | eqcomi 2233 |
. . . . . . . 8
|
| 17 | 16 | oveq1i 6010 |
. . . . . . 7
|
| 18 | 9cn 9194 |
. . . . . . . 8
| |
| 19 | 2 | nn0cni 9377 |
. . . . . . . 8
|
| 20 | 18, 9, 19 | adddiri 8153 |
. . . . . . 7
|
| 21 | 19 | mullidi 8145 |
. . . . . . . 8
|
| 22 | 21 | oveq2i 6011 |
. . . . . . 7
|
| 23 | 17, 20, 22 | 3eqtri 2254 |
. . . . . 6
|
| 24 | 14, 23 | oveq12i 6012 |
. . . . 5
|
| 25 | 24 | oveq1i 6010 |
. . . 4
|
| 26 | 8, 10 | mulcli 8147 |
. . . . . 6
|
| 27 | 18, 19 | mulcli 8147 |
. . . . . 6
|
| 28 | add4 8303 |
. . . . . . 7
| |
| 29 | 28 | oveq1d 6015 |
. . . . . 6
|
| 30 | 26, 10, 27, 19, 29 | mp4an 427 |
. . . . 5
|
| 31 | 26, 27 | addcli 8146 |
. . . . . 6
|
| 32 | 10, 19 | addcli 8146 |
. . . . . 6
|
| 33 | 3dvds2dec.c |
. . . . . . 7
| |
| 34 | 33 | nn0cni 9377 |
. . . . . 6
|
| 35 | 31, 32, 34 | addassi 8150 |
. . . . 5
|
| 36 | 9t11e99 9703 |
. . . . . . . . . . 11
| |
| 37 | 36 | eqcomi 2233 |
. . . . . . . . . 10
|
| 38 | 37 | oveq1i 6010 |
. . . . . . . . 9
|
| 39 | 1nn0 9381 |
. . . . . . . . . . . 12
| |
| 40 | 39, 39 | deccl 9588 |
. . . . . . . . . . 11
|
| 41 | 40 | nn0cni 9377 |
. . . . . . . . . 10
|
| 42 | 18, 41, 10 | mulassi 8151 |
. . . . . . . . 9
|
| 43 | 38, 42 | eqtri 2250 |
. . . . . . . 8
|
| 44 | 43 | oveq1i 6010 |
. . . . . . 7
|
| 45 | 41, 10 | mulcli 8147 |
. . . . . . . . 9
|
| 46 | 18, 45, 19 | adddii 8152 |
. . . . . . . 8
|
| 47 | 46 | eqcomi 2233 |
. . . . . . 7
|
| 48 | 3t3e9 9264 |
. . . . . . . . . 10
| |
| 49 | 48 | eqcomi 2233 |
. . . . . . . . 9
|
| 50 | 49 | oveq1i 6010 |
. . . . . . . 8
|
| 51 | 3cn 9181 |
. . . . . . . . 9
| |
| 52 | 45, 19 | addcli 8146 |
. . . . . . . . 9
|
| 53 | 51, 51, 52 | mulassi 8151 |
. . . . . . . 8
|
| 54 | 50, 53 | eqtri 2250 |
. . . . . . 7
|
| 55 | 44, 47, 54 | 3eqtri 2254 |
. . . . . 6
|
| 56 | 55 | oveq1i 6010 |
. . . . 5
|
| 57 | 30, 35, 56 | 3eqtri 2254 |
. . . 4
|
| 58 | 3, 25, 57 | 3eqtri 2254 |
. . 3
|
| 59 | 58 | breq2i 4090 |
. 2
|
| 60 | 3z 9471 |
. . 3
| |
| 61 | 1 | nn0zi 9464 |
. . . . 5
|
| 62 | 2 | nn0zi 9464 |
. . . . 5
|
| 63 | zaddcl 9482 |
. . . . 5
| |
| 64 | 61, 62, 63 | mp2an 426 |
. . . 4
|
| 65 | 33 | nn0zi 9464 |
. . . 4
|
| 66 | zaddcl 9482 |
. . . 4
| |
| 67 | 64, 65, 66 | mp2an 426 |
. . 3
|
| 68 | 40 | nn0zi 9464 |
. . . . . . . 8
|
| 69 | zmulcl 9496 |
. . . . . . . 8
| |
| 70 | 68, 61, 69 | mp2an 426 |
. . . . . . 7
|
| 71 | zaddcl 9482 |
. . . . . . 7
| |
| 72 | 70, 62, 71 | mp2an 426 |
. . . . . 6
|
| 73 | zmulcl 9496 |
. . . . . 6
| |
| 74 | 60, 72, 73 | mp2an 426 |
. . . . 5
|
| 75 | zmulcl 9496 |
. . . . 5
| |
| 76 | 60, 74, 75 | mp2an 426 |
. . . 4
|
| 77 | dvdsmul1 12319 |
. . . . 5
| |
| 78 | 60, 74, 77 | mp2an 426 |
. . . 4
|
| 79 | 76, 78 | pm3.2i 272 |
. . 3
|
| 80 | dvdsadd2b 12346 |
. . 3
| |
| 81 | 60, 67, 79, 80 | mp3an 1371 |
. 2
|
| 82 | 59, 81 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-z 9443 df-dec 9575 df-uz 9719 df-seqfrec 10665 df-exp 10756 df-dvds 12294 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |