| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3dvds2dec | Unicode version | ||
| Description: A decimal number is
divisible by three iff the sum of its three "digits"
is divisible by three. The term "digits" in its narrow sense
is only
correct if |
| Ref | Expression |
|---|---|
| 3dvdsdec.a |
|
| 3dvdsdec.b |
|
| 3dvds2dec.c |
|
| Ref | Expression |
|---|---|
| 3dvds2dec |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3dvdsdec.a |
. . . . 5
| |
| 2 | 3dvdsdec.b |
. . . . 5
| |
| 3 | 1, 2 | 3dec 10881 |
. . . 4
|
| 4 | sq10e99m1 10880 |
. . . . . . . 8
| |
| 5 | 4 | oveq1i 5967 |
. . . . . . 7
|
| 6 | 9nn0 9339 |
. . . . . . . . . 10
| |
| 7 | 6, 6 | deccl 9538 |
. . . . . . . . 9
|
| 8 | 7 | nn0cni 9327 |
. . . . . . . 8
|
| 9 | ax-1cn 8038 |
. . . . . . . 8
| |
| 10 | 1 | nn0cni 9327 |
. . . . . . . 8
|
| 11 | 8, 9, 10 | adddiri 8103 |
. . . . . . 7
|
| 12 | 10 | mullidi 8095 |
. . . . . . . 8
|
| 13 | 12 | oveq2i 5968 |
. . . . . . 7
|
| 14 | 5, 11, 13 | 3eqtri 2231 |
. . . . . 6
|
| 15 | 9p1e10 9526 |
. . . . . . . . 9
| |
| 16 | 15 | eqcomi 2210 |
. . . . . . . 8
|
| 17 | 16 | oveq1i 5967 |
. . . . . . 7
|
| 18 | 9cn 9144 |
. . . . . . . 8
| |
| 19 | 2 | nn0cni 9327 |
. . . . . . . 8
|
| 20 | 18, 9, 19 | adddiri 8103 |
. . . . . . 7
|
| 21 | 19 | mullidi 8095 |
. . . . . . . 8
|
| 22 | 21 | oveq2i 5968 |
. . . . . . 7
|
| 23 | 17, 20, 22 | 3eqtri 2231 |
. . . . . 6
|
| 24 | 14, 23 | oveq12i 5969 |
. . . . 5
|
| 25 | 24 | oveq1i 5967 |
. . . 4
|
| 26 | 8, 10 | mulcli 8097 |
. . . . . 6
|
| 27 | 18, 19 | mulcli 8097 |
. . . . . 6
|
| 28 | add4 8253 |
. . . . . . 7
| |
| 29 | 28 | oveq1d 5972 |
. . . . . 6
|
| 30 | 26, 10, 27, 19, 29 | mp4an 427 |
. . . . 5
|
| 31 | 26, 27 | addcli 8096 |
. . . . . 6
|
| 32 | 10, 19 | addcli 8096 |
. . . . . 6
|
| 33 | 3dvds2dec.c |
. . . . . . 7
| |
| 34 | 33 | nn0cni 9327 |
. . . . . 6
|
| 35 | 31, 32, 34 | addassi 8100 |
. . . . 5
|
| 36 | 9t11e99 9653 |
. . . . . . . . . . 11
| |
| 37 | 36 | eqcomi 2210 |
. . . . . . . . . 10
|
| 38 | 37 | oveq1i 5967 |
. . . . . . . . 9
|
| 39 | 1nn0 9331 |
. . . . . . . . . . . 12
| |
| 40 | 39, 39 | deccl 9538 |
. . . . . . . . . . 11
|
| 41 | 40 | nn0cni 9327 |
. . . . . . . . . 10
|
| 42 | 18, 41, 10 | mulassi 8101 |
. . . . . . . . 9
|
| 43 | 38, 42 | eqtri 2227 |
. . . . . . . 8
|
| 44 | 43 | oveq1i 5967 |
. . . . . . 7
|
| 45 | 41, 10 | mulcli 8097 |
. . . . . . . . 9
|
| 46 | 18, 45, 19 | adddii 8102 |
. . . . . . . 8
|
| 47 | 46 | eqcomi 2210 |
. . . . . . 7
|
| 48 | 3t3e9 9214 |
. . . . . . . . . 10
| |
| 49 | 48 | eqcomi 2210 |
. . . . . . . . 9
|
| 50 | 49 | oveq1i 5967 |
. . . . . . . 8
|
| 51 | 3cn 9131 |
. . . . . . . . 9
| |
| 52 | 45, 19 | addcli 8096 |
. . . . . . . . 9
|
| 53 | 51, 51, 52 | mulassi 8101 |
. . . . . . . 8
|
| 54 | 50, 53 | eqtri 2227 |
. . . . . . 7
|
| 55 | 44, 47, 54 | 3eqtri 2231 |
. . . . . 6
|
| 56 | 55 | oveq1i 5967 |
. . . . 5
|
| 57 | 30, 35, 56 | 3eqtri 2231 |
. . . 4
|
| 58 | 3, 25, 57 | 3eqtri 2231 |
. . 3
|
| 59 | 58 | breq2i 4059 |
. 2
|
| 60 | 3z 9421 |
. . 3
| |
| 61 | 1 | nn0zi 9414 |
. . . . 5
|
| 62 | 2 | nn0zi 9414 |
. . . . 5
|
| 63 | zaddcl 9432 |
. . . . 5
| |
| 64 | 61, 62, 63 | mp2an 426 |
. . . 4
|
| 65 | 33 | nn0zi 9414 |
. . . 4
|
| 66 | zaddcl 9432 |
. . . 4
| |
| 67 | 64, 65, 66 | mp2an 426 |
. . 3
|
| 68 | 40 | nn0zi 9414 |
. . . . . . . 8
|
| 69 | zmulcl 9446 |
. . . . . . . 8
| |
| 70 | 68, 61, 69 | mp2an 426 |
. . . . . . 7
|
| 71 | zaddcl 9432 |
. . . . . . 7
| |
| 72 | 70, 62, 71 | mp2an 426 |
. . . . . 6
|
| 73 | zmulcl 9446 |
. . . . . 6
| |
| 74 | 60, 72, 73 | mp2an 426 |
. . . . 5
|
| 75 | zmulcl 9446 |
. . . . 5
| |
| 76 | 60, 74, 75 | mp2an 426 |
. . . 4
|
| 77 | dvdsmul1 12199 |
. . . . 5
| |
| 78 | 60, 74, 77 | mp2an 426 |
. . . 4
|
| 79 | 76, 78 | pm3.2i 272 |
. . 3
|
| 80 | dvdsadd2b 12226 |
. . 3
| |
| 81 | 60, 67, 79, 80 | mp3an 1350 |
. 2
|
| 82 | 59, 81 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-n0 9316 df-z 9393 df-dec 9525 df-uz 9669 df-seqfrec 10615 df-exp 10706 df-dvds 12174 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |