ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3dvds2dec Unicode version

Theorem 3dvds2dec 12372
Description: A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if  A,  B and  C actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers  A,  B and  C. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dvdsdec.a  |-  A  e. 
NN0
3dvdsdec.b  |-  B  e. 
NN0
3dvds2dec.c  |-  C  e. 
NN0
Assertion
Ref Expression
3dvds2dec  |-  ( 3 
|| ;; A B C  <->  3  ||  ( ( A  +  B )  +  C
) )

Proof of Theorem 3dvds2dec
StepHypRef Expression
1 3dvdsdec.a . . . . 5  |-  A  e. 
NN0
2 3dvdsdec.b . . . . 5  |-  B  e. 
NN0
31, 23dec 10931 . . . 4  |- ;; A B C  =  (
( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)
4 sq10e99m1 10930 . . . . . . . 8  |-  (; 1 0 ^ 2 )  =  (; 9 9  +  1 )
54oveq1i 6010 . . . . . . 7  |-  ( (; 1
0 ^ 2 )  x.  A )  =  ( (; 9 9  +  1 )  x.  A )
6 9nn0 9389 . . . . . . . . . 10  |-  9  e.  NN0
76, 6deccl 9588 . . . . . . . . 9  |- ; 9 9  e.  NN0
87nn0cni 9377 . . . . . . . 8  |- ; 9 9  e.  CC
9 ax-1cn 8088 . . . . . . . 8  |-  1  e.  CC
101nn0cni 9377 . . . . . . . 8  |-  A  e.  CC
118, 9, 10adddiri 8153 . . . . . . 7  |-  ( (; 9
9  +  1 )  x.  A )  =  ( (; 9 9  x.  A
)  +  ( 1  x.  A ) )
1210mullidi 8145 . . . . . . . 8  |-  ( 1  x.  A )  =  A
1312oveq2i 6011 . . . . . . 7  |-  ( (; 9
9  x.  A )  +  ( 1  x.  A ) )  =  ( (; 9 9  x.  A
)  +  A )
145, 11, 133eqtri 2254 . . . . . 6  |-  ( (; 1
0 ^ 2 )  x.  A )  =  ( (; 9 9  x.  A
)  +  A )
15 9p1e10 9576 . . . . . . . . 9  |-  ( 9  +  1 )  = ; 1
0
1615eqcomi 2233 . . . . . . . 8  |- ; 1 0  =  ( 9  +  1 )
1716oveq1i 6010 . . . . . . 7  |-  (; 1 0  x.  B
)  =  ( ( 9  +  1 )  x.  B )
18 9cn 9194 . . . . . . . 8  |-  9  e.  CC
192nn0cni 9377 . . . . . . . 8  |-  B  e.  CC
2018, 9, 19adddiri 8153 . . . . . . 7  |-  ( ( 9  +  1 )  x.  B )  =  ( ( 9  x.  B )  +  ( 1  x.  B ) )
2119mullidi 8145 . . . . . . . 8  |-  ( 1  x.  B )  =  B
2221oveq2i 6011 . . . . . . 7  |-  ( ( 9  x.  B )  +  ( 1  x.  B ) )  =  ( ( 9  x.  B )  +  B
)
2317, 20, 223eqtri 2254 . . . . . 6  |-  (; 1 0  x.  B
)  =  ( ( 9  x.  B )  +  B )
2414, 23oveq12i 6012 . . . . 5  |-  ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  =  ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )
2524oveq1i 6010 . . . 4  |-  ( ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)  =  ( ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )
268, 10mulcli 8147 . . . . . 6  |-  (; 9 9  x.  A
)  e.  CC
2718, 19mulcli 8147 . . . . . 6  |-  ( 9  x.  B )  e.  CC
28 add4 8303 . . . . . . 7  |-  ( ( ( (; 9 9  x.  A
)  e.  CC  /\  A  e.  CC )  /\  ( ( 9  x.  B )  e.  CC  /\  B  e.  CC ) )  ->  ( (
(; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  =  ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) ) )
2928oveq1d 6015 . . . . . 6  |-  ( ( ( (; 9 9  x.  A
)  e.  CC  /\  A  e.  CC )  /\  ( ( 9  x.  B )  e.  CC  /\  B  e.  CC ) )  ->  ( (
( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )  =  ( ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) )  +  C ) )
3026, 10, 27, 19, 29mp4an 427 . . . . 5  |-  ( ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )  =  ( ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) )  +  C )
3126, 27addcli 8146 . . . . . 6  |-  ( (; 9
9  x.  A )  +  ( 9  x.  B ) )  e.  CC
3210, 19addcli 8146 . . . . . 6  |-  ( A  +  B )  e.  CC
33 3dvds2dec.c . . . . . . 7  |-  C  e. 
NN0
3433nn0cni 9377 . . . . . 6  |-  C  e.  CC
3531, 32, 34addassi 8150 . . . . 5  |-  ( ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) )  +  C )  =  ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( ( A  +  B )  +  C ) )
36 9t11e99 9703 . . . . . . . . . . 11  |-  ( 9  x. ; 1 1 )  = ; 9
9
3736eqcomi 2233 . . . . . . . . . 10  |- ; 9 9  =  ( 9  x. ; 1 1 )
3837oveq1i 6010 . . . . . . . . 9  |-  (; 9 9  x.  A
)  =  ( ( 9  x. ; 1 1 )  x.  A )
39 1nn0 9381 . . . . . . . . . . . 12  |-  1  e.  NN0
4039, 39deccl 9588 . . . . . . . . . . 11  |- ; 1 1  e.  NN0
4140nn0cni 9377 . . . . . . . . . 10  |- ; 1 1  e.  CC
4218, 41, 10mulassi 8151 . . . . . . . . 9  |-  ( ( 9  x. ; 1 1 )  x.  A )  =  ( 9  x.  (; 1 1  x.  A
) )
4338, 42eqtri 2250 . . . . . . . 8  |-  (; 9 9  x.  A
)  =  ( 9  x.  (; 1 1  x.  A
) )
4443oveq1i 6010 . . . . . . 7  |-  ( (; 9
9  x.  A )  +  ( 9  x.  B ) )  =  ( ( 9  x.  (; 1 1  x.  A
) )  +  ( 9  x.  B ) )
4541, 10mulcli 8147 . . . . . . . . 9  |-  (; 1 1  x.  A
)  e.  CC
4618, 45, 19adddii 8152 . . . . . . . 8  |-  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( ( 9  x.  (; 1 1  x.  A
) )  +  ( 9  x.  B ) )
4746eqcomi 2233 . . . . . . 7  |-  ( ( 9  x.  (; 1 1  x.  A
) )  +  ( 9  x.  B ) )  =  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )
48 3t3e9 9264 . . . . . . . . . 10  |-  ( 3  x.  3 )  =  9
4948eqcomi 2233 . . . . . . . . 9  |-  9  =  ( 3  x.  3 )
5049oveq1i 6010 . . . . . . . 8  |-  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( ( 3  x.  3 )  x.  ( (; 1 1  x.  A
)  +  B ) )
51 3cn 9181 . . . . . . . . 9  |-  3  e.  CC
5245, 19addcli 8146 . . . . . . . . 9  |-  ( (; 1
1  x.  A )  +  B )  e.  CC
5351, 51, 52mulassi 8151 . . . . . . . 8  |-  ( ( 3  x.  3 )  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )
5450, 53eqtri 2250 . . . . . . 7  |-  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )
5544, 47, 543eqtri 2254 . . . . . 6  |-  ( (; 9
9  x.  A )  +  ( 9  x.  B ) )  =  ( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )
5655oveq1i 6010 . . . . 5  |-  ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( ( A  +  B )  +  C ) )  =  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  +  ( ( A  +  B
)  +  C ) )
5730, 35, 563eqtri 2254 . . . 4  |-  ( ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )  =  ( ( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )  +  ( ( A  +  B )  +  C ) )
583, 25, 573eqtri 2254 . . 3  |- ;; A B C  =  (
( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )  +  ( ( A  +  B )  +  C ) )
5958breq2i 4090 . 2  |-  ( 3 
|| ;; A B C  <->  3  ||  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  +  ( ( A  +  B
)  +  C ) ) )
60 3z 9471 . . 3  |-  3  e.  ZZ
611nn0zi 9464 . . . . 5  |-  A  e.  ZZ
622nn0zi 9464 . . . . 5  |-  B  e.  ZZ
63 zaddcl 9482 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  ZZ )
6461, 62, 63mp2an 426 . . . 4  |-  ( A  +  B )  e.  ZZ
6533nn0zi 9464 . . . 4  |-  C  e.  ZZ
66 zaddcl 9482 . . . 4  |-  ( ( ( A  +  B
)  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( A  +  B )  +  C
)  e.  ZZ )
6764, 65, 66mp2an 426 . . 3  |-  ( ( A  +  B )  +  C )  e.  ZZ
6840nn0zi 9464 . . . . . . . 8  |- ; 1 1  e.  ZZ
69 zmulcl 9496 . . . . . . . 8  |-  ( (; 1
1  e.  ZZ  /\  A  e.  ZZ )  ->  (; 1 1  x.  A
)  e.  ZZ )
7068, 61, 69mp2an 426 . . . . . . 7  |-  (; 1 1  x.  A
)  e.  ZZ
71 zaddcl 9482 . . . . . . 7  |-  ( ( (; 1 1  x.  A
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( (; 1 1  x.  A
)  +  B )  e.  ZZ )
7270, 62, 71mp2an 426 . . . . . 6  |-  ( (; 1
1  x.  A )  +  B )  e.  ZZ
73 zmulcl 9496 . . . . . 6  |-  ( ( 3  e.  ZZ  /\  ( (; 1 1  x.  A
)  +  B )  e.  ZZ )  -> 
( 3  x.  (
(; 1 1  x.  A
)  +  B ) )  e.  ZZ )
7460, 72, 73mp2an 426 . . . . 5  |-  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) )  e.  ZZ
75 zmulcl 9496 . . . . 5  |-  ( ( 3  e.  ZZ  /\  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) )  e.  ZZ )  ->  ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  e.  ZZ )
7660, 74, 75mp2an 426 . . . 4  |-  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )  e.  ZZ
77 dvdsmul1 12319 . . . . 5  |-  ( ( 3  e.  ZZ  /\  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) )  e.  ZZ )  ->  3  ||  (
3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) ) )
7860, 74, 77mp2an 426 . . . 4  |-  3  ||  ( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )
7976, 78pm3.2i 272 . . 3  |-  ( ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )  e.  ZZ  /\  3  ||  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) ) )
80 dvdsadd2b 12346 . . 3  |-  ( ( 3  e.  ZZ  /\  ( ( A  +  B )  +  C
)  e.  ZZ  /\  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  e.  ZZ  /\  3  ||  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) ) ) )  ->  ( 3  ||  ( ( A  +  B )  +  C
)  <->  3  ||  (
( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )  +  ( ( A  +  B )  +  C ) ) ) )
8160, 67, 79, 80mp3an 1371 . 2  |-  ( 3 
||  ( ( A  +  B )  +  C )  <->  3  ||  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  +  ( ( A  +  B
)  +  C ) ) )
8259, 81bitr4i 187 1  |-  ( 3 
|| ;; A B C  <->  3  ||  ( ( A  +  B )  +  C
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   CCcc 7993   0cc0 7995   1c1 7996    + caddc 7998    x. cmul 8000   2c2 9157   3c3 9158   9c9 9164   NN0cn0 9365   ZZcz 9442  ;cdc 9574   ^cexp 10755    || cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-dec 9575  df-uz 9719  df-seqfrec 10665  df-exp 10756  df-dvds 12294
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator