ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3dvds2dec Unicode version

Theorem 3dvds2dec 11599
Description: A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if  A,  B and  C actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers  A,  B and  C. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
3dvdsdec.a  |-  A  e. 
NN0
3dvdsdec.b  |-  B  e. 
NN0
3dvds2dec.c  |-  C  e. 
NN0
Assertion
Ref Expression
3dvds2dec  |-  ( 3 
|| ;; A B C  <->  3  ||  ( ( A  +  B )  +  C
) )

Proof of Theorem 3dvds2dec
StepHypRef Expression
1 3dvdsdec.a . . . . 5  |-  A  e. 
NN0
2 3dvdsdec.b . . . . 5  |-  B  e. 
NN0
31, 23dec 10492 . . . 4  |- ;; A B C  =  (
( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)
4 sq10e99m1 10491 . . . . . . . 8  |-  (; 1 0 ^ 2 )  =  (; 9 9  +  1 )
54oveq1i 5792 . . . . . . 7  |-  ( (; 1
0 ^ 2 )  x.  A )  =  ( (; 9 9  +  1 )  x.  A )
6 9nn0 9025 . . . . . . . . . 10  |-  9  e.  NN0
76, 6deccl 9220 . . . . . . . . 9  |- ; 9 9  e.  NN0
87nn0cni 9013 . . . . . . . 8  |- ; 9 9  e.  CC
9 ax-1cn 7737 . . . . . . . 8  |-  1  e.  CC
101nn0cni 9013 . . . . . . . 8  |-  A  e.  CC
118, 9, 10adddiri 7801 . . . . . . 7  |-  ( (; 9
9  +  1 )  x.  A )  =  ( (; 9 9  x.  A
)  +  ( 1  x.  A ) )
1210mulid2i 7793 . . . . . . . 8  |-  ( 1  x.  A )  =  A
1312oveq2i 5793 . . . . . . 7  |-  ( (; 9
9  x.  A )  +  ( 1  x.  A ) )  =  ( (; 9 9  x.  A
)  +  A )
145, 11, 133eqtri 2165 . . . . . 6  |-  ( (; 1
0 ^ 2 )  x.  A )  =  ( (; 9 9  x.  A
)  +  A )
15 9p1e10 9208 . . . . . . . . 9  |-  ( 9  +  1 )  = ; 1
0
1615eqcomi 2144 . . . . . . . 8  |- ; 1 0  =  ( 9  +  1 )
1716oveq1i 5792 . . . . . . 7  |-  (; 1 0  x.  B
)  =  ( ( 9  +  1 )  x.  B )
18 9cn 8832 . . . . . . . 8  |-  9  e.  CC
192nn0cni 9013 . . . . . . . 8  |-  B  e.  CC
2018, 9, 19adddiri 7801 . . . . . . 7  |-  ( ( 9  +  1 )  x.  B )  =  ( ( 9  x.  B )  +  ( 1  x.  B ) )
2119mulid2i 7793 . . . . . . . 8  |-  ( 1  x.  B )  =  B
2221oveq2i 5793 . . . . . . 7  |-  ( ( 9  x.  B )  +  ( 1  x.  B ) )  =  ( ( 9  x.  B )  +  B
)
2317, 20, 223eqtri 2165 . . . . . 6  |-  (; 1 0  x.  B
)  =  ( ( 9  x.  B )  +  B )
2414, 23oveq12i 5794 . . . . 5  |-  ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  =  ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )
2524oveq1i 5792 . . . 4  |-  ( ( ( (; 1 0 ^ 2 )  x.  A )  +  (; 1 0  x.  B
) )  +  C
)  =  ( ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )
268, 10mulcli 7795 . . . . . 6  |-  (; 9 9  x.  A
)  e.  CC
2718, 19mulcli 7795 . . . . . 6  |-  ( 9  x.  B )  e.  CC
28 add4 7947 . . . . . . 7  |-  ( ( ( (; 9 9  x.  A
)  e.  CC  /\  A  e.  CC )  /\  ( ( 9  x.  B )  e.  CC  /\  B  e.  CC ) )  ->  ( (
(; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  =  ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) ) )
2928oveq1d 5797 . . . . . 6  |-  ( ( ( (; 9 9  x.  A
)  e.  CC  /\  A  e.  CC )  /\  ( ( 9  x.  B )  e.  CC  /\  B  e.  CC ) )  ->  ( (
( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )  =  ( ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) )  +  C ) )
3026, 10, 27, 19, 29mp4an 424 . . . . 5  |-  ( ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )  =  ( ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) )  +  C )
3126, 27addcli 7794 . . . . . 6  |-  ( (; 9
9  x.  A )  +  ( 9  x.  B ) )  e.  CC
3210, 19addcli 7794 . . . . . 6  |-  ( A  +  B )  e.  CC
33 3dvds2dec.c . . . . . . 7  |-  C  e. 
NN0
3433nn0cni 9013 . . . . . 6  |-  C  e.  CC
3531, 32, 34addassi 7798 . . . . 5  |-  ( ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( A  +  B ) )  +  C )  =  ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( ( A  +  B )  +  C ) )
36 9t11e99 9335 . . . . . . . . . . 11  |-  ( 9  x. ; 1 1 )  = ; 9
9
3736eqcomi 2144 . . . . . . . . . 10  |- ; 9 9  =  ( 9  x. ; 1 1 )
3837oveq1i 5792 . . . . . . . . 9  |-  (; 9 9  x.  A
)  =  ( ( 9  x. ; 1 1 )  x.  A )
39 1nn0 9017 . . . . . . . . . . . 12  |-  1  e.  NN0
4039, 39deccl 9220 . . . . . . . . . . 11  |- ; 1 1  e.  NN0
4140nn0cni 9013 . . . . . . . . . 10  |- ; 1 1  e.  CC
4218, 41, 10mulassi 7799 . . . . . . . . 9  |-  ( ( 9  x. ; 1 1 )  x.  A )  =  ( 9  x.  (; 1 1  x.  A
) )
4338, 42eqtri 2161 . . . . . . . 8  |-  (; 9 9  x.  A
)  =  ( 9  x.  (; 1 1  x.  A
) )
4443oveq1i 5792 . . . . . . 7  |-  ( (; 9
9  x.  A )  +  ( 9  x.  B ) )  =  ( ( 9  x.  (; 1 1  x.  A
) )  +  ( 9  x.  B ) )
4541, 10mulcli 7795 . . . . . . . . 9  |-  (; 1 1  x.  A
)  e.  CC
4618, 45, 19adddii 7800 . . . . . . . 8  |-  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( ( 9  x.  (; 1 1  x.  A
) )  +  ( 9  x.  B ) )
4746eqcomi 2144 . . . . . . 7  |-  ( ( 9  x.  (; 1 1  x.  A
) )  +  ( 9  x.  B ) )  =  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )
48 3t3e9 8901 . . . . . . . . . 10  |-  ( 3  x.  3 )  =  9
4948eqcomi 2144 . . . . . . . . 9  |-  9  =  ( 3  x.  3 )
5049oveq1i 5792 . . . . . . . 8  |-  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( ( 3  x.  3 )  x.  ( (; 1 1  x.  A
)  +  B ) )
51 3cn 8819 . . . . . . . . 9  |-  3  e.  CC
5245, 19addcli 7794 . . . . . . . . 9  |-  ( (; 1
1  x.  A )  +  B )  e.  CC
5351, 51, 52mulassi 7799 . . . . . . . 8  |-  ( ( 3  x.  3 )  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )
5450, 53eqtri 2161 . . . . . . 7  |-  ( 9  x.  ( (; 1 1  x.  A
)  +  B ) )  =  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )
5544, 47, 543eqtri 2165 . . . . . 6  |-  ( (; 9
9  x.  A )  +  ( 9  x.  B ) )  =  ( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )
5655oveq1i 5792 . . . . 5  |-  ( ( (; 9 9  x.  A
)  +  ( 9  x.  B ) )  +  ( ( A  +  B )  +  C ) )  =  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  +  ( ( A  +  B
)  +  C ) )
5730, 35, 563eqtri 2165 . . . 4  |-  ( ( ( (; 9 9  x.  A
)  +  A )  +  ( ( 9  x.  B )  +  B ) )  +  C )  =  ( ( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )  +  ( ( A  +  B )  +  C ) )
583, 25, 573eqtri 2165 . . 3  |- ;; A B C  =  (
( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )  +  ( ( A  +  B )  +  C ) )
5958breq2i 3945 . 2  |-  ( 3 
|| ;; A B C  <->  3  ||  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  +  ( ( A  +  B
)  +  C ) ) )
60 3z 9107 . . 3  |-  3  e.  ZZ
611nn0zi 9100 . . . . 5  |-  A  e.  ZZ
622nn0zi 9100 . . . . 5  |-  B  e.  ZZ
63 zaddcl 9118 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  +  B
)  e.  ZZ )
6461, 62, 63mp2an 423 . . . 4  |-  ( A  +  B )  e.  ZZ
6533nn0zi 9100 . . . 4  |-  C  e.  ZZ
66 zaddcl 9118 . . . 4  |-  ( ( ( A  +  B
)  e.  ZZ  /\  C  e.  ZZ )  ->  ( ( A  +  B )  +  C
)  e.  ZZ )
6764, 65, 66mp2an 423 . . 3  |-  ( ( A  +  B )  +  C )  e.  ZZ
6840nn0zi 9100 . . . . . . . 8  |- ; 1 1  e.  ZZ
69 zmulcl 9131 . . . . . . . 8  |-  ( (; 1
1  e.  ZZ  /\  A  e.  ZZ )  ->  (; 1 1  x.  A
)  e.  ZZ )
7068, 61, 69mp2an 423 . . . . . . 7  |-  (; 1 1  x.  A
)  e.  ZZ
71 zaddcl 9118 . . . . . . 7  |-  ( ( (; 1 1  x.  A
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( (; 1 1  x.  A
)  +  B )  e.  ZZ )
7270, 62, 71mp2an 423 . . . . . 6  |-  ( (; 1
1  x.  A )  +  B )  e.  ZZ
73 zmulcl 9131 . . . . . 6  |-  ( ( 3  e.  ZZ  /\  ( (; 1 1  x.  A
)  +  B )  e.  ZZ )  -> 
( 3  x.  (
(; 1 1  x.  A
)  +  B ) )  e.  ZZ )
7460, 72, 73mp2an 423 . . . . 5  |-  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) )  e.  ZZ
75 zmulcl 9131 . . . . 5  |-  ( ( 3  e.  ZZ  /\  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) )  e.  ZZ )  ->  ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  e.  ZZ )
7660, 74, 75mp2an 423 . . . 4  |-  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )  e.  ZZ
77 dvdsmul1 11551 . . . . 5  |-  ( ( 3  e.  ZZ  /\  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) )  e.  ZZ )  ->  3  ||  (
3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) ) )
7860, 74, 77mp2an 423 . . . 4  |-  3  ||  ( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )
7976, 78pm3.2i 270 . . 3  |-  ( ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) )  e.  ZZ  /\  3  ||  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) ) )
80 dvdsadd2b 11576 . . 3  |-  ( ( 3  e.  ZZ  /\  ( ( A  +  B )  +  C
)  e.  ZZ  /\  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  e.  ZZ  /\  3  ||  ( 3  x.  ( 3  x.  ( (; 1 1  x.  A
)  +  B ) ) ) ) )  ->  ( 3  ||  ( ( A  +  B )  +  C
)  <->  3  ||  (
( 3  x.  (
3  x.  ( (; 1
1  x.  A )  +  B ) ) )  +  ( ( A  +  B )  +  C ) ) ) )
8160, 67, 79, 80mp3an 1316 . 2  |-  ( 3 
||  ( ( A  +  B )  +  C )  <->  3  ||  ( ( 3  x.  ( 3  x.  (
(; 1 1  x.  A
)  +  B ) ) )  +  ( ( A  +  B
)  +  C ) ) )
8259, 81bitr4i 186 1  |-  ( 3 
|| ;; A B C  <->  3  ||  ( ( A  +  B )  +  C
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   CCcc 7642   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649   2c2 8795   3c3 8796   9c9 8802   NN0cn0 9001   ZZcz 9078  ;cdc 9206   ^cexp 10323    || cdvds 11529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-7 8808  df-8 8809  df-9 8810  df-n0 9002  df-z 9079  df-dec 9207  df-uz 9351  df-seqfrec 10250  df-exp 10324  df-dvds 11530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator