Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > numltc | Unicode version |
Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numlt.1 | |
numlt.2 | |
numlt.3 | |
numltc.3 | |
numltc.4 | |
numltc.5 | |
numltc.6 |
Ref | Expression |
---|---|
numltc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numlt.1 | . . . . 5 | |
2 | numlt.2 | . . . . 5 | |
3 | numltc.3 | . . . . 5 | |
4 | numltc.5 | . . . . 5 | |
5 | 1, 2, 3, 1, 4 | numlt 9367 | . . . 4 |
6 | 1 | nnrei 8887 | . . . . . . 7 |
7 | 6 | recni 7932 | . . . . . 6 |
8 | 2 | nn0rei 9146 | . . . . . . 7 |
9 | 8 | recni 7932 | . . . . . 6 |
10 | ax-1cn 7867 | . . . . . 6 | |
11 | 7, 9, 10 | adddii 7930 | . . . . 5 |
12 | 7 | mulid1i 7922 | . . . . . 6 |
13 | 12 | oveq2i 5864 | . . . . 5 |
14 | 11, 13 | eqtri 2191 | . . . 4 |
15 | 5, 14 | breqtrri 4016 | . . 3 |
16 | numltc.6 | . . . . 5 | |
17 | numlt.3 | . . . . . 6 | |
18 | nn0ltp1le 9274 | . . . . . 6 | |
19 | 2, 17, 18 | mp2an 424 | . . . . 5 |
20 | 16, 19 | mpbi 144 | . . . 4 |
21 | 1 | nngt0i 8908 | . . . . 5 |
22 | peano2re 8055 | . . . . . . 7 | |
23 | 8, 22 | ax-mp 5 | . . . . . 6 |
24 | 17 | nn0rei 9146 | . . . . . 6 |
25 | 23, 24, 6 | lemul2i 8841 | . . . . 5 |
26 | 21, 25 | ax-mp 5 | . . . 4 |
27 | 20, 26 | mpbi 144 | . . 3 |
28 | 6, 8 | remulcli 7934 | . . . . 5 |
29 | 3 | nn0rei 9146 | . . . . 5 |
30 | 28, 29 | readdcli 7933 | . . . 4 |
31 | 6, 23 | remulcli 7934 | . . . 4 |
32 | 6, 24 | remulcli 7934 | . . . 4 |
33 | 30, 31, 32 | ltletri 8026 | . . 3 |
34 | 15, 27, 33 | mp2an 424 | . 2 |
35 | numltc.4 | . . 3 | |
36 | 32, 35 | nn0addge1i 9183 | . 2 |
37 | 35 | nn0rei 9146 | . . . 4 |
38 | 32, 37 | readdcli 7933 | . . 3 |
39 | 30, 32, 38 | ltletri 8026 | . 2 |
40 | 34, 36, 39 | mp2an 424 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wcel 2141 class class class wbr 3989 (class class class)co 5853 cr 7773 cc0 7774 c1 7775 caddc 7777 cmul 7779 clt 7954 cle 7955 cn 8878 cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: decltc 9371 numlti 9379 |
Copyright terms: Public domain | W3C validator |