Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > numltc | Unicode version |
Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numlt.1 | |
numlt.2 | |
numlt.3 | |
numltc.3 | |
numltc.4 | |
numltc.5 | |
numltc.6 |
Ref | Expression |
---|---|
numltc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numlt.1 | . . . . 5 | |
2 | numlt.2 | . . . . 5 | |
3 | numltc.3 | . . . . 5 | |
4 | numltc.5 | . . . . 5 | |
5 | 1, 2, 3, 1, 4 | numlt 9346 | . . . 4 |
6 | 1 | nnrei 8866 | . . . . . . 7 |
7 | 6 | recni 7911 | . . . . . 6 |
8 | 2 | nn0rei 9125 | . . . . . . 7 |
9 | 8 | recni 7911 | . . . . . 6 |
10 | ax-1cn 7846 | . . . . . 6 | |
11 | 7, 9, 10 | adddii 7909 | . . . . 5 |
12 | 7 | mulid1i 7901 | . . . . . 6 |
13 | 12 | oveq2i 5853 | . . . . 5 |
14 | 11, 13 | eqtri 2186 | . . . 4 |
15 | 5, 14 | breqtrri 4009 | . . 3 |
16 | numltc.6 | . . . . 5 | |
17 | numlt.3 | . . . . . 6 | |
18 | nn0ltp1le 9253 | . . . . . 6 | |
19 | 2, 17, 18 | mp2an 423 | . . . . 5 |
20 | 16, 19 | mpbi 144 | . . . 4 |
21 | 1 | nngt0i 8887 | . . . . 5 |
22 | peano2re 8034 | . . . . . . 7 | |
23 | 8, 22 | ax-mp 5 | . . . . . 6 |
24 | 17 | nn0rei 9125 | . . . . . 6 |
25 | 23, 24, 6 | lemul2i 8820 | . . . . 5 |
26 | 21, 25 | ax-mp 5 | . . . 4 |
27 | 20, 26 | mpbi 144 | . . 3 |
28 | 6, 8 | remulcli 7913 | . . . . 5 |
29 | 3 | nn0rei 9125 | . . . . 5 |
30 | 28, 29 | readdcli 7912 | . . . 4 |
31 | 6, 23 | remulcli 7913 | . . . 4 |
32 | 6, 24 | remulcli 7913 | . . . 4 |
33 | 30, 31, 32 | ltletri 8005 | . . 3 |
34 | 15, 27, 33 | mp2an 423 | . 2 |
35 | numltc.4 | . . 3 | |
36 | 32, 35 | nn0addge1i 9162 | . 2 |
37 | 35 | nn0rei 9125 | . . . 4 |
38 | 32, 37 | readdcli 7912 | . . 3 |
39 | 30, 32, 38 | ltletri 8005 | . 2 |
40 | 34, 36, 39 | mp2an 423 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wcel 2136 class class class wbr 3982 (class class class)co 5842 cr 7752 cc0 7753 c1 7754 caddc 7756 cmul 7758 clt 7933 cle 7934 cn 8857 cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 |
This theorem is referenced by: decltc 9350 numlti 9358 |
Copyright terms: Public domain | W3C validator |