ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numltc Unicode version

Theorem numltc 9368
Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numlt.1  |-  T  e.  NN
numlt.2  |-  A  e. 
NN0
numlt.3  |-  B  e. 
NN0
numltc.3  |-  C  e. 
NN0
numltc.4  |-  D  e. 
NN0
numltc.5  |-  C  < 
T
numltc.6  |-  A  < 
B
Assertion
Ref Expression
numltc  |-  ( ( T  x.  A )  +  C )  < 
( ( T  x.  B )  +  D
)

Proof of Theorem numltc
StepHypRef Expression
1 numlt.1 . . . . 5  |-  T  e.  NN
2 numlt.2 . . . . 5  |-  A  e. 
NN0
3 numltc.3 . . . . 5  |-  C  e. 
NN0
4 numltc.5 . . . . 5  |-  C  < 
T
51, 2, 3, 1, 4numlt 9367 . . . 4  |-  ( ( T  x.  A )  +  C )  < 
( ( T  x.  A )  +  T
)
61nnrei 8887 . . . . . . 7  |-  T  e.  RR
76recni 7932 . . . . . 6  |-  T  e.  CC
82nn0rei 9146 . . . . . . 7  |-  A  e.  RR
98recni 7932 . . . . . 6  |-  A  e.  CC
10 ax-1cn 7867 . . . . . 6  |-  1  e.  CC
117, 9, 10adddii 7930 . . . . 5  |-  ( T  x.  ( A  + 
1 ) )  =  ( ( T  x.  A )  +  ( T  x.  1 ) )
127mulid1i 7922 . . . . . 6  |-  ( T  x.  1 )  =  T
1312oveq2i 5864 . . . . 5  |-  ( ( T  x.  A )  +  ( T  x.  1 ) )  =  ( ( T  x.  A )  +  T
)
1411, 13eqtri 2191 . . . 4  |-  ( T  x.  ( A  + 
1 ) )  =  ( ( T  x.  A )  +  T
)
155, 14breqtrri 4016 . . 3  |-  ( ( T  x.  A )  +  C )  < 
( T  x.  ( A  +  1 ) )
16 numltc.6 . . . . 5  |-  A  < 
B
17 numlt.3 . . . . . 6  |-  B  e. 
NN0
18 nn0ltp1le 9274 . . . . . 6  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  <  B  <->  ( A  +  1 )  <_  B ) )
192, 17, 18mp2an 424 . . . . 5  |-  ( A  <  B  <->  ( A  +  1 )  <_  B )
2016, 19mpbi 144 . . . 4  |-  ( A  +  1 )  <_  B
211nngt0i 8908 . . . . 5  |-  0  <  T
22 peano2re 8055 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
238, 22ax-mp 5 . . . . . 6  |-  ( A  +  1 )  e.  RR
2417nn0rei 9146 . . . . . 6  |-  B  e.  RR
2523, 24, 6lemul2i 8841 . . . . 5  |-  ( 0  <  T  ->  (
( A  +  1 )  <_  B  <->  ( T  x.  ( A  +  1 ) )  <_  ( T  x.  B )
) )
2621, 25ax-mp 5 . . . 4  |-  ( ( A  +  1 )  <_  B  <->  ( T  x.  ( A  +  1 ) )  <_  ( T  x.  B )
)
2720, 26mpbi 144 . . 3  |-  ( T  x.  ( A  + 
1 ) )  <_ 
( T  x.  B
)
286, 8remulcli 7934 . . . . 5  |-  ( T  x.  A )  e.  RR
293nn0rei 9146 . . . . 5  |-  C  e.  RR
3028, 29readdcli 7933 . . . 4  |-  ( ( T  x.  A )  +  C )  e.  RR
316, 23remulcli 7934 . . . 4  |-  ( T  x.  ( A  + 
1 ) )  e.  RR
326, 24remulcli 7934 . . . 4  |-  ( T  x.  B )  e.  RR
3330, 31, 32ltletri 8026 . . 3  |-  ( ( ( ( T  x.  A )  +  C
)  <  ( T  x.  ( A  +  1 ) )  /\  ( T  x.  ( A  +  1 ) )  <_  ( T  x.  B ) )  -> 
( ( T  x.  A )  +  C
)  <  ( T  x.  B ) )
3415, 27, 33mp2an 424 . 2  |-  ( ( T  x.  A )  +  C )  < 
( T  x.  B
)
35 numltc.4 . . 3  |-  D  e. 
NN0
3632, 35nn0addge1i 9183 . 2  |-  ( T  x.  B )  <_ 
( ( T  x.  B )  +  D
)
3735nn0rei 9146 . . . 4  |-  D  e.  RR
3832, 37readdcli 7933 . . 3  |-  ( ( T  x.  B )  +  D )  e.  RR
3930, 32, 38ltletri 8026 . 2  |-  ( ( ( ( T  x.  A )  +  C
)  <  ( T  x.  B )  /\  ( T  x.  B )  <_  ( ( T  x.  B )  +  D
) )  ->  (
( T  x.  A
)  +  C )  <  ( ( T  x.  B )  +  D ) )
4034, 36, 39mp2an 424 1  |-  ( ( T  x.  A )  +  C )  < 
( ( T  x.  B )  +  D
)
Colors of variables: wff set class
Syntax hints:    <-> wb 104    e. wcel 2141   class class class wbr 3989  (class class class)co 5853   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    <_ cle 7955   NNcn 8878   NN0cn0 9135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213
This theorem is referenced by:  decltc  9371  numlti  9379
  Copyright terms: Public domain W3C validator