ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numltc Unicode version

Theorem numltc 9499
Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numlt.1  |-  T  e.  NN
numlt.2  |-  A  e. 
NN0
numlt.3  |-  B  e. 
NN0
numltc.3  |-  C  e. 
NN0
numltc.4  |-  D  e. 
NN0
numltc.5  |-  C  < 
T
numltc.6  |-  A  < 
B
Assertion
Ref Expression
numltc  |-  ( ( T  x.  A )  +  C )  < 
( ( T  x.  B )  +  D
)

Proof of Theorem numltc
StepHypRef Expression
1 numlt.1 . . . . 5  |-  T  e.  NN
2 numlt.2 . . . . 5  |-  A  e. 
NN0
3 numltc.3 . . . . 5  |-  C  e. 
NN0
4 numltc.5 . . . . 5  |-  C  < 
T
51, 2, 3, 1, 4numlt 9498 . . . 4  |-  ( ( T  x.  A )  +  C )  < 
( ( T  x.  A )  +  T
)
61nnrei 9016 . . . . . . 7  |-  T  e.  RR
76recni 8055 . . . . . 6  |-  T  e.  CC
82nn0rei 9277 . . . . . . 7  |-  A  e.  RR
98recni 8055 . . . . . 6  |-  A  e.  CC
10 ax-1cn 7989 . . . . . 6  |-  1  e.  CC
117, 9, 10adddii 8053 . . . . 5  |-  ( T  x.  ( A  + 
1 ) )  =  ( ( T  x.  A )  +  ( T  x.  1 ) )
127mulridi 8045 . . . . . 6  |-  ( T  x.  1 )  =  T
1312oveq2i 5936 . . . . 5  |-  ( ( T  x.  A )  +  ( T  x.  1 ) )  =  ( ( T  x.  A )  +  T
)
1411, 13eqtri 2217 . . . 4  |-  ( T  x.  ( A  + 
1 ) )  =  ( ( T  x.  A )  +  T
)
155, 14breqtrri 4061 . . 3  |-  ( ( T  x.  A )  +  C )  < 
( T  x.  ( A  +  1 ) )
16 numltc.6 . . . . 5  |-  A  < 
B
17 numlt.3 . . . . . 6  |-  B  e. 
NN0
18 nn0ltp1le 9405 . . . . . 6  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( A  <  B  <->  ( A  +  1 )  <_  B ) )
192, 17, 18mp2an 426 . . . . 5  |-  ( A  <  B  <->  ( A  +  1 )  <_  B )
2016, 19mpbi 145 . . . 4  |-  ( A  +  1 )  <_  B
211nngt0i 9037 . . . . 5  |-  0  <  T
22 peano2re 8179 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
238, 22ax-mp 5 . . . . . 6  |-  ( A  +  1 )  e.  RR
2417nn0rei 9277 . . . . . 6  |-  B  e.  RR
2523, 24, 6lemul2i 8969 . . . . 5  |-  ( 0  <  T  ->  (
( A  +  1 )  <_  B  <->  ( T  x.  ( A  +  1 ) )  <_  ( T  x.  B )
) )
2621, 25ax-mp 5 . . . 4  |-  ( ( A  +  1 )  <_  B  <->  ( T  x.  ( A  +  1 ) )  <_  ( T  x.  B )
)
2720, 26mpbi 145 . . 3  |-  ( T  x.  ( A  + 
1 ) )  <_ 
( T  x.  B
)
286, 8remulcli 8057 . . . . 5  |-  ( T  x.  A )  e.  RR
293nn0rei 9277 . . . . 5  |-  C  e.  RR
3028, 29readdcli 8056 . . . 4  |-  ( ( T  x.  A )  +  C )  e.  RR
316, 23remulcli 8057 . . . 4  |-  ( T  x.  ( A  + 
1 ) )  e.  RR
326, 24remulcli 8057 . . . 4  |-  ( T  x.  B )  e.  RR
3330, 31, 32ltletri 8150 . . 3  |-  ( ( ( ( T  x.  A )  +  C
)  <  ( T  x.  ( A  +  1 ) )  /\  ( T  x.  ( A  +  1 ) )  <_  ( T  x.  B ) )  -> 
( ( T  x.  A )  +  C
)  <  ( T  x.  B ) )
3415, 27, 33mp2an 426 . 2  |-  ( ( T  x.  A )  +  C )  < 
( T  x.  B
)
35 numltc.4 . . 3  |-  D  e. 
NN0
3632, 35nn0addge1i 9314 . 2  |-  ( T  x.  B )  <_ 
( ( T  x.  B )  +  D
)
3735nn0rei 9277 . . . 4  |-  D  e.  RR
3832, 37readdcli 8056 . . 3  |-  ( ( T  x.  B )  +  D )  e.  RR
3930, 32, 38ltletri 8150 . 2  |-  ( ( ( ( T  x.  A )  +  C
)  <  ( T  x.  B )  /\  ( T  x.  B )  <_  ( ( T  x.  B )  +  D
) )  ->  (
( T  x.  A
)  +  C )  <  ( ( T  x.  B )  +  D ) )
4034, 36, 39mp2an 426 1  |-  ( ( T  x.  A )  +  C )  < 
( ( T  x.  B )  +  D
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   RRcr 7895   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    < clt 8078    <_ cle 8079   NNcn 9007   NN0cn0 9266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012  ax-pre-mulgt0 8013
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344
This theorem is referenced by:  decltc  9502  numlti  9510
  Copyright terms: Public domain W3C validator