![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > numltc | Unicode version |
Description: Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numlt.1 |
![]() ![]() ![]() ![]() |
numlt.2 |
![]() ![]() ![]() ![]() |
numlt.3 |
![]() ![]() ![]() ![]() |
numltc.3 |
![]() ![]() ![]() ![]() |
numltc.4 |
![]() ![]() ![]() ![]() |
numltc.5 |
![]() ![]() ![]() ![]() |
numltc.6 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
numltc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numlt.1 |
. . . . 5
![]() ![]() ![]() ![]() | |
2 | numlt.2 |
. . . . 5
![]() ![]() ![]() ![]() | |
3 | numltc.3 |
. . . . 5
![]() ![]() ![]() ![]() | |
4 | numltc.5 |
. . . . 5
![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 1, 4 | numlt 9000 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1 | nnrei 8529 |
. . . . . . 7
![]() ![]() ![]() ![]() |
7 | 6 | recni 7597 |
. . . . . 6
![]() ![]() ![]() ![]() |
8 | 2 | nn0rei 8782 |
. . . . . . 7
![]() ![]() ![]() ![]() |
9 | 8 | recni 7597 |
. . . . . 6
![]() ![]() ![]() ![]() |
10 | ax-1cn 7535 |
. . . . . 6
![]() ![]() ![]() ![]() | |
11 | 7, 9, 10 | adddii 7595 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 7 | mulid1i 7587 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 12 | oveq2i 5701 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 11, 13 | eqtri 2115 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 5, 14 | breqtrri 3892 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | numltc.6 |
. . . . 5
![]() ![]() ![]() ![]() | |
17 | numlt.3 |
. . . . . 6
![]() ![]() ![]() ![]() | |
18 | nn0ltp1le 8910 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
19 | 2, 17, 18 | mp2an 418 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 16, 19 | mpbi 144 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 1 | nngt0i 8550 |
. . . . 5
![]() ![]() ![]() ![]() |
22 | peano2re 7715 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | 8, 22 | ax-mp 7 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 17 | nn0rei 8782 |
. . . . . 6
![]() ![]() ![]() ![]() |
25 | 23, 24, 6 | lemul2i 8483 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 21, 25 | ax-mp 7 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 20, 26 | mpbi 144 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 6, 8 | remulcli 7599 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 3 | nn0rei 8782 |
. . . . 5
![]() ![]() ![]() ![]() |
30 | 28, 29 | readdcli 7598 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 6, 23 | remulcli 7599 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 6, 24 | remulcli 7599 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 30, 31, 32 | ltletri 7688 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 15, 27, 33 | mp2an 418 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | numltc.4 |
. . 3
![]() ![]() ![]() ![]() | |
36 | 32, 35 | nn0addge1i 8819 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 35 | nn0rei 8782 |
. . . 4
![]() ![]() ![]() ![]() |
38 | 32, 37 | readdcli 7598 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
39 | 30, 32, 38 | ltletri 7688 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
40 | 34, 36, 39 | mp2an 418 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-13 1456 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-un 4284 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-mulrcl 7541 ax-addcom 7542 ax-mulcom 7543 ax-addass 7544 ax-mulass 7545 ax-distr 7546 ax-i2m1 7547 ax-0lt1 7548 ax-1rid 7549 ax-0id 7550 ax-rnegex 7551 ax-precex 7552 ax-cnre 7553 ax-pre-ltirr 7554 ax-pre-ltwlin 7555 ax-pre-lttrn 7556 ax-pre-ltadd 7558 ax-pre-mulgt0 7559 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-nel 2358 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-opab 3922 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-pnf 7621 df-mnf 7622 df-xr 7623 df-ltxr 7624 df-le 7625 df-sub 7752 df-neg 7753 df-inn 8521 df-n0 8772 df-z 8849 |
This theorem is referenced by: decltc 9004 numlti 9012 |
Copyright terms: Public domain | W3C validator |