ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulassi Unicode version

Theorem mulassi 8143
Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1  |-  A  e.  CC
axi.2  |-  B  e.  CC
axi.3  |-  C  e.  CC
Assertion
Ref Expression
mulassi  |-  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C )
)

Proof of Theorem mulassi
StepHypRef Expression
1 axi.1 . 2  |-  A  e.  CC
2 axi.2 . 2  |-  B  e.  CC
3 axi.3 . 2  |-  C  e.  CC
4 mulass 8118 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
51, 2, 3, 4mp3an 1371 1  |-  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C )
)
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200  (class class class)co 5994   CCcc 7985    x. cmul 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-mulass 8090
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  8th4div3  9318  numma  9609  decbin0  9705  sq4e2t8  10846  3dec  10923  ef01bndlem  12253  3dvdsdec  12362  3dvds2dec  12363  dec5dvds  12921  karatsuba  12939  sincos4thpi  15499  sincos6thpi  15501  2lgsoddprmlem3d  15774
  Copyright terms: Public domain W3C validator