ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulassi Unicode version

Theorem mulassi 7908
Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1  |-  A  e.  CC
axi.2  |-  B  e.  CC
axi.3  |-  C  e.  CC
Assertion
Ref Expression
mulassi  |-  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C )
)

Proof of Theorem mulassi
StepHypRef Expression
1 axi.1 . 2  |-  A  e.  CC
2 axi.2 . 2  |-  B  e.  CC
3 axi.3 . 2  |-  C  e.  CC
4 mulass 7884 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  x.  B
)  x.  C )  =  ( A  x.  ( B  x.  C
) ) )
51, 2, 3, 4mp3an 1327 1  |-  ( ( A  x.  B )  x.  C )  =  ( A  x.  ( B  x.  C )
)
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136  (class class class)co 5842   CCcc 7751    x. cmul 7758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-mulass 7856
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  8th4div3  9076  numma  9365  decbin0  9461  sq4e2t8  10552  3dec  10627  ef01bndlem  11697  3dvdsdec  11802  3dvds2dec  11803  sincos4thpi  13411  sincos6thpi  13413
  Copyright terms: Public domain W3C validator