Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > decmul1 | Unicode version |
Description: The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decmul1.p | |
decmul1.a | |
decmul1.b | |
decmul1.n | ; |
decmul1.0 | |
decmul1.c | |
decmul1.d |
Ref | Expression |
---|---|
decmul1 | ; |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 9360 | . . 3 ; | |
2 | decmul1.p | . . 3 | |
3 | decmul1.a | . . 3 | |
4 | decmul1.b | . . 3 | |
5 | decmul1.n | . . . 4 ; | |
6 | dfdec10 9346 | . . . 4 ; ; | |
7 | 5, 6 | eqtri 2191 | . . 3 ; |
8 | decmul1.0 | . . 3 | |
9 | 0nn0 9150 | . . 3 | |
10 | 3, 2 | nn0mulcli 9173 | . . . . . 6 |
11 | 10 | nn0cni 9147 | . . . . 5 |
12 | 11 | addid1i 8061 | . . . 4 |
13 | decmul1.c | . . . 4 | |
14 | 12, 13 | eqtri 2191 | . . 3 |
15 | decmul1.d | . . . . 5 | |
16 | 15 | oveq2i 5864 | . . . 4 |
17 | 4, 2 | nn0mulcli 9173 | . . . . . 6 |
18 | 17 | nn0cni 9147 | . . . . 5 |
19 | 18 | addid2i 8062 | . . . 4 |
20 | 1 | nn0cni 9147 | . . . . . . 7 ; |
21 | 20 | mul01i 8310 | . . . . . 6 ; |
22 | 21 | eqcomi 2174 | . . . . 5 ; |
23 | 22 | oveq1i 5863 | . . . 4 ; |
24 | 16, 19, 23 | 3eqtr3i 2199 | . . 3 ; |
25 | 1, 2, 3, 4, 7, 8, 9, 14, 24 | nummul1c 9391 | . 2 ; |
26 | dfdec10 9346 | . 2 ; ; | |
27 | 25, 26 | eqtr4i 2194 | 1 ; |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wcel 2141 (class class class)co 5853 cc0 7774 c1 7775 caddc 7777 cmul 7779 cn0 9135 ;cdc 9343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-n0 9136 df-dec 9344 |
This theorem is referenced by: sq10 10646 |
Copyright terms: Public domain | W3C validator |