| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decmul1 | Unicode version | ||
| Description: The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decmul1.p |
|
| decmul1.a |
|
| decmul1.b |
|
| decmul1.n |
|
| decmul1.0 |
|
| decmul1.c |
|
| decmul1.d |
|
| Ref | Expression |
|---|---|
| decmul1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn0 9591 |
. . 3
| |
| 2 | decmul1.p |
. . 3
| |
| 3 | decmul1.a |
. . 3
| |
| 4 | decmul1.b |
. . 3
| |
| 5 | decmul1.n |
. . . 4
| |
| 6 | dfdec10 9577 |
. . . 4
| |
| 7 | 5, 6 | eqtri 2250 |
. . 3
|
| 8 | decmul1.0 |
. . 3
| |
| 9 | 0nn0 9380 |
. . 3
| |
| 10 | 3, 2 | nn0mulcli 9403 |
. . . . . 6
|
| 11 | 10 | nn0cni 9377 |
. . . . 5
|
| 12 | 11 | addridi 8284 |
. . . 4
|
| 13 | decmul1.c |
. . . 4
| |
| 14 | 12, 13 | eqtri 2250 |
. . 3
|
| 15 | decmul1.d |
. . . . 5
| |
| 16 | 15 | oveq2i 6011 |
. . . 4
|
| 17 | 4, 2 | nn0mulcli 9403 |
. . . . . 6
|
| 18 | 17 | nn0cni 9377 |
. . . . 5
|
| 19 | 18 | addlidi 8285 |
. . . 4
|
| 20 | 1 | nn0cni 9377 |
. . . . . . 7
|
| 21 | 20 | mul01i 8533 |
. . . . . 6
|
| 22 | 21 | eqcomi 2233 |
. . . . 5
|
| 23 | 22 | oveq1i 6010 |
. . . 4
|
| 24 | 16, 19, 23 | 3eqtr3i 2258 |
. . 3
|
| 25 | 1, 2, 3, 4, 7, 8, 9, 14, 24 | nummul1c 9622 |
. 2
|
| 26 | dfdec10 9577 |
. 2
| |
| 27 | 25, 26 | eqtr4i 2253 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sub 8315 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-dec 9575 |
| This theorem is referenced by: sq10 10929 2exp7 12952 |
| Copyright terms: Public domain | W3C validator |