![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > decmul1 | Unicode version |
Description: The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decmul1.p |
![]() ![]() ![]() ![]() |
decmul1.a |
![]() ![]() ![]() ![]() |
decmul1.b |
![]() ![]() ![]() ![]() |
decmul1.n |
![]() ![]() ![]() ![]() ![]() |
decmul1.0 |
![]() ![]() ![]() ![]() |
decmul1.c |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
decmul1.d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
decmul1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 9465 |
. . 3
![]() ![]() ![]() ![]() ![]() | |
2 | decmul1.p |
. . 3
![]() ![]() ![]() ![]() | |
3 | decmul1.a |
. . 3
![]() ![]() ![]() ![]() | |
4 | decmul1.b |
. . 3
![]() ![]() ![]() ![]() | |
5 | decmul1.n |
. . . 4
![]() ![]() ![]() ![]() ![]() | |
6 | dfdec10 9451 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | eqtri 2214 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | decmul1.0 |
. . 3
![]() ![]() ![]() ![]() | |
9 | 0nn0 9255 |
. . 3
![]() ![]() ![]() ![]() | |
10 | 3, 2 | nn0mulcli 9278 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10 | nn0cni 9252 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 11 | addid1i 8161 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | decmul1.c |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 12, 13 | eqtri 2214 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | decmul1.d |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 15 | oveq2i 5929 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 4, 2 | nn0mulcli 9278 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 17 | nn0cni 9252 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 18 | addid2i 8162 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 1 | nn0cni 9252 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() |
21 | 20 | mul01i 8410 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 21 | eqcomi 2197 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 22 | oveq1i 5928 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 16, 19, 23 | 3eqtr3i 2222 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 1, 2, 3, 4, 7, 8, 9, 14, 24 | nummul1c 9496 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | dfdec10 9451 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
27 | 25, 26 | eqtr4i 2217 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-dec 9449 |
This theorem is referenced by: sq10 10783 |
Copyright terms: Public domain | W3C validator |