ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numnncl2 Unicode version

Theorem numnncl2 9528
Description: Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
numnncl2.1  |-  T  e.  NN
numnncl2.2  |-  A  e.  NN
Assertion
Ref Expression
numnncl2  |-  ( ( T  x.  A )  +  0 )  e.  NN

Proof of Theorem numnncl2
StepHypRef Expression
1 numnncl2.1 . . . . 5  |-  T  e.  NN
2 numnncl2.2 . . . . 5  |-  A  e.  NN
31, 2nnmulcli 9060 . . . 4  |-  ( T  x.  A )  e.  NN
43nncni 9048 . . 3  |-  ( T  x.  A )  e.  CC
54addridi 8216 . 2  |-  ( ( T  x.  A )  +  0 )  =  ( T  x.  A
)
65, 3eqeltri 2278 1  |-  ( ( T  x.  A )  +  0 )  e.  NN
Colors of variables: wff set class
Syntax hints:    e. wcel 2176  (class class class)co 5946   0cc0 7927    + caddc 7930    x. cmul 7932   NNcn 9038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4163  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-1rid 8034  ax-0id 8035  ax-cnre 8038
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-iota 5233  df-fv 5280  df-ov 5949  df-inn 9039
This theorem is referenced by:  decnncl2  9529
  Copyright terms: Public domain W3C validator