Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > decaddci | Unicode version |
Description: Add two numerals and (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decaddi.1 | |
decaddi.2 | |
decaddi.3 | |
decaddi.4 | ; |
decaddci.5 | |
decaddci.6 | |
decaddci.7 | ; |
Ref | Expression |
---|---|
decaddci | ; |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decaddi.1 | . 2 | |
2 | decaddi.2 | . 2 | |
3 | 0nn0 9129 | . 2 | |
4 | decaddi.3 | . 2 | |
5 | decaddi.4 | . 2 ; | |
6 | 4 | dec0h 9343 | . 2 ; |
7 | 1 | nn0cni 9126 | . . . . 5 |
8 | 7 | addid1i 8040 | . . . 4 |
9 | 8 | oveq1i 5852 | . . 3 |
10 | decaddci.5 | . . 3 | |
11 | 9, 10 | eqtri 2186 | . 2 |
12 | decaddci.6 | . 2 | |
13 | decaddci.7 | . 2 ; | |
14 | 1, 2, 3, 4, 5, 6, 11, 12, 13 | decaddc 9376 | 1 ; |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 (class class class)co 5842 cc0 7753 c1 7754 caddc 7756 cn0 9114 ;cdc 9322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-n0 9115 df-dec 9323 |
This theorem is referenced by: decaddci2 9383 6t4e24 9427 7t3e21 9431 7t5e35 9433 7t6e42 9434 8t3e24 9437 8t4e32 9438 8t7e56 9441 8t8e64 9442 9t3e27 9444 9t4e36 9445 9t5e45 9446 9t6e54 9447 9t7e63 9448 9t8e72 9449 9t9e81 9450 ex-exp 13618 |
Copyright terms: Public domain | W3C validator |