ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decaddci Unicode version

Theorem decaddci 9447
Description: Add two numerals  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
decaddi.1  |-  A  e. 
NN0
decaddi.2  |-  B  e. 
NN0
decaddi.3  |-  N  e. 
NN0
decaddi.4  |-  M  = ; A B
decaddci.5  |-  ( A  +  1 )  =  D
decaddci.6  |-  C  e. 
NN0
decaddci.7  |-  ( B  +  N )  = ; 1 C
Assertion
Ref Expression
decaddci  |-  ( M  +  N )  = ; D C

Proof of Theorem decaddci
StepHypRef Expression
1 decaddi.1 . 2  |-  A  e. 
NN0
2 decaddi.2 . 2  |-  B  e. 
NN0
3 0nn0 9194 . 2  |-  0  e.  NN0
4 decaddi.3 . 2  |-  N  e. 
NN0
5 decaddi.4 . 2  |-  M  = ; A B
64dec0h 9408 . 2  |-  N  = ; 0 N
71nn0cni 9191 . . . . 5  |-  A  e.  CC
87addid1i 8102 . . . 4  |-  ( A  +  0 )  =  A
98oveq1i 5888 . . 3  |-  ( ( A  +  0 )  +  1 )  =  ( A  +  1 )
10 decaddci.5 . . 3  |-  ( A  +  1 )  =  D
119, 10eqtri 2198 . 2  |-  ( ( A  +  0 )  +  1 )  =  D
12 decaddci.6 . 2  |-  C  e. 
NN0
13 decaddci.7 . 2  |-  ( B  +  N )  = ; 1 C
141, 2, 3, 4, 5, 6, 11, 12, 13decaddc 9441 1  |-  ( M  +  N )  = ; D C
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148  (class class class)co 5878   0cc0 7814   1c1 7815    + caddc 7817   NN0cn0 9179  ;cdc 9387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-sub 8133  df-inn 8923  df-2 8981  df-3 8982  df-4 8983  df-5 8984  df-6 8985  df-7 8986  df-8 8987  df-9 8988  df-n0 9180  df-dec 9388
This theorem is referenced by:  decaddci2  9448  6t4e24  9492  7t3e21  9496  7t5e35  9498  7t6e42  9499  8t3e24  9502  8t4e32  9503  8t7e56  9506  8t8e64  9507  9t3e27  9509  9t4e36  9510  9t5e45  9511  9t6e54  9512  9t7e63  9513  9t8e72  9514  9t9e81  9515  ex-exp  14619
  Copyright terms: Public domain W3C validator