ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decaddci Unicode version

Theorem decaddci 9403
Description: Add two numerals  M and  N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
decaddi.1  |-  A  e. 
NN0
decaddi.2  |-  B  e. 
NN0
decaddi.3  |-  N  e. 
NN0
decaddi.4  |-  M  = ; A B
decaddci.5  |-  ( A  +  1 )  =  D
decaddci.6  |-  C  e. 
NN0
decaddci.7  |-  ( B  +  N )  = ; 1 C
Assertion
Ref Expression
decaddci  |-  ( M  +  N )  = ; D C

Proof of Theorem decaddci
StepHypRef Expression
1 decaddi.1 . 2  |-  A  e. 
NN0
2 decaddi.2 . 2  |-  B  e. 
NN0
3 0nn0 9150 . 2  |-  0  e.  NN0
4 decaddi.3 . 2  |-  N  e. 
NN0
5 decaddi.4 . 2  |-  M  = ; A B
64dec0h 9364 . 2  |-  N  = ; 0 N
71nn0cni 9147 . . . . 5  |-  A  e.  CC
87addid1i 8061 . . . 4  |-  ( A  +  0 )  =  A
98oveq1i 5863 . . 3  |-  ( ( A  +  0 )  +  1 )  =  ( A  +  1 )
10 decaddci.5 . . 3  |-  ( A  +  1 )  =  D
119, 10eqtri 2191 . 2  |-  ( ( A  +  0 )  +  1 )  =  D
12 decaddci.6 . 2  |-  C  e. 
NN0
13 decaddci.7 . 2  |-  ( B  +  N )  = ; 1 C
141, 2, 3, 4, 5, 6, 11, 12, 13decaddc 9397 1  |-  ( M  +  N )  = ; D C
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141  (class class class)co 5853   0cc0 7774   1c1 7775    + caddc 7777   NN0cn0 9135  ;cdc 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sub 8092  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944  df-n0 9136  df-dec 9344
This theorem is referenced by:  decaddci2  9404  6t4e24  9448  7t3e21  9452  7t5e35  9454  7t6e42  9455  8t3e24  9458  8t4e32  9459  8t7e56  9462  8t8e64  9463  9t3e27  9465  9t4e36  9466  9t5e45  9467  9t6e54  9468  9t7e63  9469  9t8e72  9470  9t9e81  9471  ex-exp  13762
  Copyright terms: Public domain W3C validator