| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decaddci | Unicode version | ||
| Description: Add two numerals |
| Ref | Expression |
|---|---|
| decaddi.1 |
|
| decaddi.2 |
|
| decaddi.3 |
|
| decaddi.4 |
|
| decaddci.5 |
|
| decaddci.6 |
|
| decaddci.7 |
|
| Ref | Expression |
|---|---|
| decaddci |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decaddi.1 |
. 2
| |
| 2 | decaddi.2 |
. 2
| |
| 3 | 0nn0 9281 |
. 2
| |
| 4 | decaddi.3 |
. 2
| |
| 5 | decaddi.4 |
. 2
| |
| 6 | 4 | dec0h 9495 |
. 2
|
| 7 | 1 | nn0cni 9278 |
. . . . 5
|
| 8 | 7 | addridi 8185 |
. . . 4
|
| 9 | 8 | oveq1i 5935 |
. . 3
|
| 10 | decaddci.5 |
. . 3
| |
| 11 | 9, 10 | eqtri 2217 |
. 2
|
| 12 | decaddci.6 |
. 2
| |
| 13 | decaddci.7 |
. 2
| |
| 14 | 1, 2, 3, 4, 5, 6, 11, 12, 13 | decaddc 9528 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-dec 9475 |
| This theorem is referenced by: decaddci2 9535 6t4e24 9579 7t3e21 9583 7t5e35 9585 7t6e42 9586 8t3e24 9589 8t4e32 9590 8t7e56 9593 8t8e64 9594 9t3e27 9596 9t4e36 9597 9t5e45 9598 9t6e54 9599 9t7e63 9600 9t8e72 9601 9t9e81 9602 2exp8 12629 2exp11 12630 ex-exp 15457 |
| Copyright terms: Public domain | W3C validator |