ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9p1e10 Unicode version

Theorem 9p1e10 9541
Description: 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.)
Assertion
Ref Expression
9p1e10  |-  ( 9  +  1 )  = ; 1
0

Proof of Theorem 9p1e10
StepHypRef Expression
1 df-dec 9540 . 2  |- ; 1 0  =  ( ( ( 9  +  1 )  x.  1 )  +  0 )
2 9nn 9240 . . . . . 6  |-  9  e.  NN
3 1nn 9082 . . . . . 6  |-  1  e.  NN
4 nnaddcl 9091 . . . . . 6  |-  ( ( 9  e.  NN  /\  1  e.  NN )  ->  ( 9  +  1 )  e.  NN )
52, 3, 4mp2an 426 . . . . 5  |-  ( 9  +  1 )  e.  NN
65nncni 9081 . . . 4  |-  ( 9  +  1 )  e.  CC
76mulridi 8109 . . 3  |-  ( ( 9  +  1 )  x.  1 )  =  ( 9  +  1 )
87oveq1i 5977 . 2  |-  ( ( ( 9  +  1 )  x.  1 )  +  0 )  =  ( ( 9  +  1 )  +  0 )
96addridi 8249 . 2  |-  ( ( 9  +  1 )  +  0 )  =  ( 9  +  1 )
101, 8, 93eqtrri 2233 1  |-  ( 9  +  1 )  = ; 1
0
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178  (class class class)co 5967   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965   NNcn 9071   9c9 9129  ;cdc 9539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-1rid 8067  ax-0id 8068  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-dec 9540
This theorem is referenced by:  dfdec10  9542  10nn  9554  le9lt10  9565  decsucc  9579  5p5e10  9609  6p4e10  9610  7p3e10  9613  8p2e10  9618  9p2e11  9625  10m1e9  9634  9lt10  9669  sq10e99m1  10895  3dvds  12290  3dvdsdec  12291  3dvds2dec  12292
  Copyright terms: Public domain W3C validator