![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 9p1e10 | Unicode version |
Description: 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
9p1e10 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 9080 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 9nn 8785 |
. . . . . 6
![]() ![]() ![]() ![]() | |
3 | 1nn 8634 |
. . . . . 6
![]() ![]() ![]() ![]() | |
4 | nnaddcl 8643 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | mp2an 420 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | nncni 8633 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | mulid1i 7685 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | oveq1i 5736 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 6 | addid1i 7820 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 1, 8, 9 | 3eqtrri 2138 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-cnex 7629 ax-resscn 7630 ax-1cn 7631 ax-1re 7632 ax-icn 7633 ax-addcl 7634 ax-addrcl 7635 ax-mulcl 7636 ax-mulcom 7639 ax-addass 7640 ax-mulass 7641 ax-distr 7642 ax-1rid 7645 ax-0id 7646 ax-cnre 7649 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-rab 2397 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-br 3894 df-iota 5044 df-fv 5087 df-ov 5729 df-inn 8624 df-2 8682 df-3 8683 df-4 8684 df-5 8685 df-6 8686 df-7 8687 df-8 8688 df-9 8689 df-dec 9080 |
This theorem is referenced by: dfdec10 9082 10nn 9094 le9lt10 9105 decsucc 9119 5p5e10 9149 6p4e10 9150 7p3e10 9153 8p2e10 9158 9p2e11 9165 10m1e9 9174 9lt10 9209 sq10e99m1 10346 3dvdsdec 11403 3dvds2dec 11404 |
Copyright terms: Public domain | W3C validator |