| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 9p1e10 | Unicode version | ||
| Description: 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.) | 
| Ref | Expression | 
|---|---|
| 9p1e10 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-dec 9458 | 
. 2
 | |
| 2 | 9nn 9159 | 
. . . . . 6
 | |
| 3 | 1nn 9001 | 
. . . . . 6
 | |
| 4 | nnaddcl 9010 | 
. . . . . 6
 | |
| 5 | 2, 3, 4 | mp2an 426 | 
. . . . 5
 | 
| 6 | 5 | nncni 9000 | 
. . . 4
 | 
| 7 | 6 | mulridi 8028 | 
. . 3
 | 
| 8 | 7 | oveq1i 5932 | 
. 2
 | 
| 9 | 6 | addridi 8168 | 
. 2
 | 
| 10 | 1, 8, 9 | 3eqtrri 2222 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-1rid 7986 ax-0id 7987 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-7 9054 df-8 9055 df-9 9056 df-dec 9458 | 
| This theorem is referenced by: dfdec10 9460 10nn 9472 le9lt10 9483 decsucc 9497 5p5e10 9527 6p4e10 9528 7p3e10 9531 8p2e10 9536 9p2e11 9543 10m1e9 9552 9lt10 9587 sq10e99m1 10805 3dvds 12029 3dvdsdec 12030 3dvds2dec 12031 | 
| Copyright terms: Public domain | W3C validator |