Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > decaddi | Unicode version |
Description: Add two numerals and (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decaddi.1 | |
decaddi.2 | |
decaddi.3 | |
decaddi.4 | ; |
decaddi.5 |
Ref | Expression |
---|---|
decaddi | ; |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decaddi.1 | . 2 | |
2 | decaddi.2 | . 2 | |
3 | 0nn0 9088 | . 2 | |
4 | decaddi.3 | . 2 | |
5 | decaddi.4 | . 2 ; | |
6 | 4 | dec0h 9299 | . 2 ; |
7 | 1 | nn0cni 9085 | . . 3 |
8 | 7 | addid1i 8000 | . 2 |
9 | decaddi.5 | . 2 | |
10 | 1, 2, 3, 4, 5, 6, 8, 9 | decadd 9331 | 1 ; |
Colors of variables: wff set class |
Syntax hints: wceq 1335 wcel 2128 (class class class)co 5818 cc0 7715 caddc 7718 cn0 9073 ;cdc 9278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-sub 8031 df-inn 8817 df-2 8875 df-3 8876 df-4 8877 df-5 8878 df-6 8879 df-7 8880 df-8 8881 df-9 8882 df-n0 9074 df-dec 9279 |
This theorem is referenced by: 4t4e16 9376 6t3e18 9382 7t4e28 9388 7t7e49 9391 ex-fac 13263 |
Copyright terms: Public domain | W3C validator |