![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > decrmanc | Unicode version |
Description: Perform a multiply-add of
two numerals ![]() ![]() ![]() |
Ref | Expression |
---|---|
decrmanc.a |
![]() ![]() ![]() ![]() |
decrmanc.b |
![]() ![]() ![]() ![]() |
decrmanc.n |
![]() ![]() ![]() ![]() |
decrmanc.m |
![]() ![]() ![]() ![]() ![]() |
decrmanc.p |
![]() ![]() ![]() ![]() |
decrmanc.e |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
decrmanc.f |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
decrmanc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decrmanc.a |
. 2
![]() ![]() ![]() ![]() | |
2 | decrmanc.b |
. 2
![]() ![]() ![]() ![]() | |
3 | 0nn0 8749 |
. 2
![]() ![]() ![]() ![]() | |
4 | decrmanc.n |
. 2
![]() ![]() ![]() ![]() | |
5 | decrmanc.m |
. 2
![]() ![]() ![]() ![]() ![]() | |
6 | 4 | dec0h 8959 |
. 2
![]() ![]() ![]() ![]() ![]() |
7 | decrmanc.p |
. 2
![]() ![]() ![]() ![]() | |
8 | 1, 7 | nn0mulcli 8772 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | nn0cni 8746 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9 | addid1i 7685 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | decrmanc.e |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 10, 11 | eqtri 2109 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | decrmanc.f |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 1, 2, 3, 4, 5, 6, 7, 12, 13 | decma 8988 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-setind 4366 ax-cnex 7497 ax-resscn 7498 ax-1cn 7499 ax-1re 7500 ax-icn 7501 ax-addcl 7502 ax-addrcl 7503 ax-mulcl 7504 ax-addcom 7506 ax-mulcom 7507 ax-addass 7508 ax-mulass 7509 ax-distr 7510 ax-i2m1 7511 ax-1rid 7513 ax-0id 7514 ax-rnegex 7515 ax-cnre 7517 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2622 df-sbc 2842 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-br 3852 df-opab 3906 df-id 4129 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-iota 4993 df-fun 5030 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-sub 7716 df-inn 8484 df-2 8542 df-3 8543 df-4 8544 df-5 8545 df-6 8546 df-7 8547 df-8 8548 df-9 8549 df-n0 8735 df-dec 8939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |