ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decrmanc Unicode version

Theorem decrmanc 9032
Description: Perform a multiply-add of two numerals  M and  N against a fixed multiplicand  P (no carry). (Contributed by AV, 16-Sep-2021.)
Hypotheses
Ref Expression
decrmanc.a  |-  A  e. 
NN0
decrmanc.b  |-  B  e. 
NN0
decrmanc.n  |-  N  e. 
NN0
decrmanc.m  |-  M  = ; A B
decrmanc.p  |-  P  e. 
NN0
decrmanc.e  |-  ( A  x.  P )  =  E
decrmanc.f  |-  ( ( B  x.  P )  +  N )  =  F
Assertion
Ref Expression
decrmanc  |-  ( ( M  x.  P )  +  N )  = ; E F

Proof of Theorem decrmanc
StepHypRef Expression
1 decrmanc.a . 2  |-  A  e. 
NN0
2 decrmanc.b . 2  |-  B  e. 
NN0
3 0nn0 8786 . 2  |-  0  e.  NN0
4 decrmanc.n . 2  |-  N  e. 
NN0
5 decrmanc.m . 2  |-  M  = ; A B
64dec0h 8997 . 2  |-  N  = ; 0 N
7 decrmanc.p . 2  |-  P  e. 
NN0
81, 7nn0mulcli 8809 . . . . 5  |-  ( A  x.  P )  e. 
NN0
98nn0cni 8783 . . . 4  |-  ( A  x.  P )  e.  CC
109addid1i 7721 . . 3  |-  ( ( A  x.  P )  +  0 )  =  ( A  x.  P
)
11 decrmanc.e . . 3  |-  ( A  x.  P )  =  E
1210, 11eqtri 2115 . 2  |-  ( ( A  x.  P )  +  0 )  =  E
13 decrmanc.f . 2  |-  ( ( B  x.  P )  +  N )  =  F
141, 2, 3, 4, 5, 6, 7, 12, 13decma 9026 1  |-  ( ( M  x.  P )  +  N )  = ; E F
Colors of variables: wff set class
Syntax hints:    = wceq 1296    e. wcel 1445  (class class class)co 5690   0cc0 7447    + caddc 7450    x. cmul 7452   NN0cn0 8771  ;cdc 8976
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-sub 7752  df-inn 8521  df-2 8579  df-3 8580  df-4 8581  df-5 8582  df-6 8583  df-7 8584  df-8 8585  df-9 8586  df-n0 8772  df-dec 8977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator