ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decrmanc Unicode version

Theorem decrmanc 8994
Description: Perform a multiply-add of two numerals  M and  N against a fixed multiplicand  P (no carry). (Contributed by AV, 16-Sep-2021.)
Hypotheses
Ref Expression
decrmanc.a  |-  A  e. 
NN0
decrmanc.b  |-  B  e. 
NN0
decrmanc.n  |-  N  e. 
NN0
decrmanc.m  |-  M  = ; A B
decrmanc.p  |-  P  e. 
NN0
decrmanc.e  |-  ( A  x.  P )  =  E
decrmanc.f  |-  ( ( B  x.  P )  +  N )  =  F
Assertion
Ref Expression
decrmanc  |-  ( ( M  x.  P )  +  N )  = ; E F

Proof of Theorem decrmanc
StepHypRef Expression
1 decrmanc.a . 2  |-  A  e. 
NN0
2 decrmanc.b . 2  |-  B  e. 
NN0
3 0nn0 8749 . 2  |-  0  e.  NN0
4 decrmanc.n . 2  |-  N  e. 
NN0
5 decrmanc.m . 2  |-  M  = ; A B
64dec0h 8959 . 2  |-  N  = ; 0 N
7 decrmanc.p . 2  |-  P  e. 
NN0
81, 7nn0mulcli 8772 . . . . 5  |-  ( A  x.  P )  e. 
NN0
98nn0cni 8746 . . . 4  |-  ( A  x.  P )  e.  CC
109addid1i 7685 . . 3  |-  ( ( A  x.  P )  +  0 )  =  ( A  x.  P
)
11 decrmanc.e . . 3  |-  ( A  x.  P )  =  E
1210, 11eqtri 2109 . 2  |-  ( ( A  x.  P )  +  0 )  =  E
13 decrmanc.f . 2  |-  ( ( B  x.  P )  +  N )  =  F
141, 2, 3, 4, 5, 6, 7, 12, 13decma 8988 1  |-  ( ( M  x.  P )  +  N )  = ; E F
Colors of variables: wff set class
Syntax hints:    = wceq 1290    e. wcel 1439  (class class class)co 5666   0cc0 7411    + caddc 7414    x. cmul 7416   NN0cn0 8734  ;cdc 8938
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-setind 4366  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-cnre 7517
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-br 3852  df-opab 3906  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-iota 4993  df-fun 5030  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-sub 7716  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-5 8545  df-6 8546  df-7 8547  df-8 8548  df-9 8549  df-n0 8735  df-dec 8939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator