| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlidi | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| mul.1 |
|
| Ref | Expression |
|---|---|
| addlidi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 |
. 2
| |
| 2 | addlid 8273 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1cn 8080 ax-icn 8082 ax-addcl 8083 ax-mulcl 8085 ax-addcom 8087 ax-i2m1 8092 ax-0id 8095 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: ine0 8528 inelr 8719 muleqadd 8803 0p1e1 9212 iap0 9322 num0h 9577 nummul1c 9614 decrmac 9623 decmul1 9629 fz0tp 10306 fz0to4untppr 10308 fzo0to3tp 10412 cats1fvn 11282 rei 11396 imi 11397 resqrexlemover 11507 ef01bndlem 12253 5ndvds3 12431 dec5dvds2 12922 2exp11 12945 2exp16 12946 efhalfpi 15458 sinq34lt0t 15490 ex-fac 16022 |
| Copyright terms: Public domain | W3C validator |