![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addlidi | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
mul.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addlidi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | addlid 8163 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7970 ax-icn 7972 ax-addcl 7973 ax-mulcl 7975 ax-addcom 7977 ax-i2m1 7982 ax-0id 7985 |
This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
This theorem is referenced by: ine0 8418 inelr 8608 muleqadd 8692 0p1e1 9101 iap0 9211 num0h 9465 nummul1c 9502 decrmac 9511 decmul1 9517 fz0tp 10194 fz0to4untppr 10196 fzo0to3tp 10292 rei 11049 imi 11050 resqrexlemover 11160 ef01bndlem 11905 dec5dvds2 12558 2exp11 12581 2exp16 12582 efhalfpi 15008 sinq34lt0t 15040 ex-fac 15341 |
Copyright terms: Public domain | W3C validator |