| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlidi | Unicode version | ||
| Description: |
| Ref | Expression |
|---|---|
| mul.1 |
|
| Ref | Expression |
|---|---|
| addlidi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 |
. 2
| |
| 2 | addlid 8218 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2188 ax-1cn 8025 ax-icn 8027 ax-addcl 8028 ax-mulcl 8030 ax-addcom 8032 ax-i2m1 8037 ax-0id 8040 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-clel 2202 |
| This theorem is referenced by: ine0 8473 inelr 8664 muleqadd 8748 0p1e1 9157 iap0 9267 num0h 9522 nummul1c 9559 decrmac 9568 decmul1 9574 fz0tp 10251 fz0to4untppr 10253 fzo0to3tp 10355 rei 11254 imi 11255 resqrexlemover 11365 ef01bndlem 12111 5ndvds3 12289 dec5dvds2 12780 2exp11 12803 2exp16 12804 efhalfpi 15315 sinq34lt0t 15347 ex-fac 15738 |
| Copyright terms: Public domain | W3C validator |