ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alxfr Unicode version

Theorem alxfr 4462
Description: Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 18-Feb-2007.)
Hypothesis
Ref Expression
alxfr.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
alxfr  |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. x ph  <->  A. y ps ) )
Distinct variable groups:    x, A    ph, y    ps, x    x, y
Allowed substitution hints:    ph( x)    ps( y)    A( y)    B( x, y)

Proof of Theorem alxfr
StepHypRef Expression
1 alxfr.1 . . . . . . 7  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21spcgv 2825 . . . . . 6  |-  ( A  e.  B  ->  ( A. x ph  ->  ps ) )
32com12 30 . . . . 5  |-  ( A. x ph  ->  ( A  e.  B  ->  ps )
)
43alimdv 1879 . . . 4  |-  ( A. x ph  ->  ( A. y  A  e.  B  ->  A. y ps )
)
54com12 30 . . 3  |-  ( A. y  A  e.  B  ->  ( A. x ph  ->  A. y ps )
)
65adantr 276 . 2  |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. x ph  ->  A. y ps ) )
7 nfa1 1541 . . . . . 6  |-  F/ y A. y ps
8 nfv 1528 . . . . . 6  |-  F/ y
ph
9 sp 1511 . . . . . . 7  |-  ( A. y ps  ->  ps )
109, 1syl5ibrcom 157 . . . . . 6  |-  ( A. y ps  ->  ( x  =  A  ->  ph )
)
117, 8, 10exlimd 1597 . . . . 5  |-  ( A. y ps  ->  ( E. y  x  =  A  ->  ph ) )
1211alimdv 1879 . . . 4  |-  ( A. y ps  ->  ( A. x E. y  x  =  A  ->  A. x ph ) )
1312com12 30 . . 3  |-  ( A. x E. y  x  =  A  ->  ( A. y ps  ->  A. x ph ) )
1413adantl 277 . 2  |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. y ps  ->  A. x ph ) )
156, 14impbid 129 1  |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. x ph  <->  A. y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    = wceq 1353   E.wex 1492    e. wcel 2148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator