ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alxfr Unicode version

Theorem alxfr 4439
Description: Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 18-Feb-2007.)
Hypothesis
Ref Expression
alxfr.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
alxfr  |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. x ph  <->  A. y ps ) )
Distinct variable groups:    x, A    ph, y    ps, x    x, y
Allowed substitution hints:    ph( x)    ps( y)    A( y)    B( x, y)

Proof of Theorem alxfr
StepHypRef Expression
1 alxfr.1 . . . . . . 7  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21spcgv 2813 . . . . . 6  |-  ( A  e.  B  ->  ( A. x ph  ->  ps ) )
32com12 30 . . . . 5  |-  ( A. x ph  ->  ( A  e.  B  ->  ps )
)
43alimdv 1867 . . . 4  |-  ( A. x ph  ->  ( A. y  A  e.  B  ->  A. y ps )
)
54com12 30 . . 3  |-  ( A. y  A  e.  B  ->  ( A. x ph  ->  A. y ps )
)
65adantr 274 . 2  |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. x ph  ->  A. y ps ) )
7 nfa1 1529 . . . . . 6  |-  F/ y A. y ps
8 nfv 1516 . . . . . 6  |-  F/ y
ph
9 sp 1499 . . . . . . 7  |-  ( A. y ps  ->  ps )
109, 1syl5ibrcom 156 . . . . . 6  |-  ( A. y ps  ->  ( x  =  A  ->  ph )
)
117, 8, 10exlimd 1585 . . . . 5  |-  ( A. y ps  ->  ( E. y  x  =  A  ->  ph ) )
1211alimdv 1867 . . . 4  |-  ( A. y ps  ->  ( A. x E. y  x  =  A  ->  A. x ph ) )
1312com12 30 . . 3  |-  ( A. x E. y  x  =  A  ->  ( A. y ps  ->  A. x ph ) )
1413adantl 275 . 2  |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. y ps  ->  A. x ph ) )
156, 14impbid 128 1  |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. x ph  <->  A. y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341    = wceq 1343   E.wex 1480    e. wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator