| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibrcom | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 |
|
| imbitrrid.2 |
|
| Ref | Expression |
|---|---|
| syl5ibrcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 |
. . 3
| |
| 2 | imbitrrid.2 |
. . 3
| |
| 3 | 1, 2 | imbitrrid 156 |
. 2
|
| 4 | 3 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimprcd 160 elsn2g 3676 preqr1g 3820 opth1 4298 euotd 4317 tz7.2 4419 reusv3 4525 alxfr 4526 reuhypd 4536 ordsucim 4566 suc11g 4623 nlimsucg 4632 xpsspw 4805 funcnvuni 5362 fvmptdv2 5692 fsn 5775 fconst2g 5822 funfvima 5839 foco2 5845 isores3 5907 eusvobj2 5953 ovmpodv2 6102 ovelrn 6118 f1opw2 6175 suppssfv 6177 suppssov1 6178 nnmordi 6625 nnmord 6626 qsss 6704 eroveu 6736 th3qlem1 6747 mapsncnv 6805 elixpsn 6845 ixpsnf1o 6846 en1bg 6915 pw2f1odclem 6956 mapxpen 6970 en1eqsnbi 7077 updjud 7210 addnidpig 7484 enq0tr 7582 prcdnql 7632 prcunqu 7633 genipv 7657 genpelvl 7660 genpelvu 7661 distrlem5prl 7734 distrlem5pru 7735 aptiprlemu 7788 mulrid 8104 ltne 8192 cnegex 8285 creur 9067 creui 9068 cju 9069 nnsub 9110 un0addcl 9363 un0mulcl 9364 zaddcl 9447 elz2 9479 qmulz 9779 qre 9781 qnegcl 9792 elpqb 9806 xrltne 9970 xlesubadd 10040 iccid 10082 fzsn 10223 fzsuc2 10236 fz1sbc 10253 elfzp12 10256 modqmuladd 10548 bcval5 10945 bcpasc 10948 hashprg 10990 hashfzo 11004 wrdl1s1 11122 cats1un 11212 swrdccat3blem 11230 shftlem 11242 replim 11285 sqrtsq 11470 absle 11515 maxabslemval 11634 negfi 11654 xrmaxiflemval 11676 summodclem2 11808 summodc 11809 zsumdc 11810 fsum3 11813 fsummulc2 11874 fsum00 11888 isumsplit 11917 prodmodclem2 12003 prodmodc 12004 zproddc 12005 fprodseq 12009 prodsnf 12018 fzo0dvdseq 12283 divalgmod 12353 gcdabs1 12425 dvdsgcd 12448 dvdsmulgcd 12461 lcmgcdeq 12520 isprm2lem 12553 dvdsprime 12559 coprm 12581 prmdvdsexpr 12587 rpexp 12590 phibndlem 12653 dfphi2 12657 hashgcdlem 12675 odzdvds 12683 nnoddn2prm 12698 pythagtriplem1 12703 pceulem 12732 pcqmul 12741 pcqcl 12744 pcxnn0cl 12748 pcxcl 12749 pcneg 12763 pcabs 12764 pcgcd1 12766 pcz 12770 pcprmpw2 12771 pcprmpw 12772 dvdsprmpweqle 12775 difsqpwdvds 12776 pcaddlem 12777 pcadd 12778 pcmpt 12781 pockthg 12795 4sqlem2 12827 4sqlem4 12830 mul4sq 12832 mnd1id 13403 0subm 13431 mulgnn0p1 13584 mulgnn0ass 13609 dvreq1 14019 nzrunit 14065 rrgeq0 14142 domneq0 14149 lmodfopnelem2 14202 lss1d 14260 lspsneq0 14303 znidom 14534 znunit 14536 znrrg 14537 istopon 14600 eltg3 14644 tgidm 14661 restbasg 14755 tgrest 14756 tgcn 14795 cnconst 14821 lmss 14833 txbas 14845 txbasval 14854 upxp 14859 blssps 15014 blss 15015 metrest 15093 blssioo 15140 elcncf1di 15166 elply2 15322 plyf 15324 dvdsppwf1o 15576 perfectlem2 15587 perfect 15588 lgsmod 15618 lgsne0 15630 lgsdirnn0 15639 gausslemma2dlem1a 15650 gausslemma2dlem6 15659 lgseisenlem2 15663 lgsquadlem1 15669 lgsquadlem2 15670 2lgslem1b 15681 2sqlem2 15707 mul2sq 15708 2sqlem7 15713 lpvtx 15790 bj-peano4 16090 |
| Copyright terms: Public domain | W3C validator |