| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibrcom | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 |
|
| imbitrrid.2 |
|
| Ref | Expression |
|---|---|
| syl5ibrcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 |
. . 3
| |
| 2 | imbitrrid.2 |
. . 3
| |
| 3 | 1, 2 | imbitrrid 156 |
. 2
|
| 4 | 3 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimprcd 160 elsn2g 3699 preqr1g 3843 opth1 4321 euotd 4340 tz7.2 4444 reusv3 4550 alxfr 4551 reuhypd 4561 ordsucim 4591 suc11g 4648 nlimsucg 4657 xpsspw 4830 funcnvuni 5389 fvmptdv2 5723 fsn 5806 fconst2g 5853 funfvima 5870 foco2 5876 isores3 5938 riotaeqimp 5978 eusvobj2 5986 ovmpodv2 6137 ovelrn 6153 f1opw2 6210 suppssfv 6212 suppssov1 6213 nnmordi 6660 nnmord 6661 qsss 6739 eroveu 6771 th3qlem1 6782 mapsncnv 6840 elixpsn 6880 ixpsnf1o 6881 en1bg 6950 pw2f1odclem 6991 mapxpen 7005 en1eqsnbi 7112 updjud 7245 addnidpig 7519 enq0tr 7617 prcdnql 7667 prcunqu 7668 genipv 7692 genpelvl 7695 genpelvu 7696 distrlem5prl 7769 distrlem5pru 7770 aptiprlemu 7823 mulrid 8139 ltne 8227 cnegex 8320 creur 9102 creui 9103 cju 9104 nnsub 9145 un0addcl 9398 un0mulcl 9399 zaddcl 9482 elz2 9514 qmulz 9814 qre 9816 qnegcl 9827 elpqb 9841 xrltne 10005 xlesubadd 10075 iccid 10117 fzsn 10258 fzsuc2 10271 fz1sbc 10288 elfzp12 10291 modqmuladd 10583 bcval5 10980 bcpasc 10983 hashprg 11025 hashfzo 11039 wrdl1s1 11158 cats1un 11248 swrdccat3blem 11266 shftlem 11322 replim 11365 sqrtsq 11550 absle 11595 maxabslemval 11714 negfi 11734 xrmaxiflemval 11756 summodclem2 11888 summodc 11889 zsumdc 11890 fsum3 11893 fsummulc2 11954 fsum00 11968 isumsplit 11997 prodmodclem2 12083 prodmodc 12084 zproddc 12085 fprodseq 12089 prodsnf 12098 fzo0dvdseq 12363 divalgmod 12433 gcdabs1 12505 dvdsgcd 12528 dvdsmulgcd 12541 lcmgcdeq 12600 isprm2lem 12633 dvdsprime 12639 coprm 12661 prmdvdsexpr 12667 rpexp 12670 phibndlem 12733 dfphi2 12737 hashgcdlem 12755 odzdvds 12763 nnoddn2prm 12778 pythagtriplem1 12783 pceulem 12812 pcqmul 12821 pcqcl 12824 pcxnn0cl 12828 pcxcl 12829 pcneg 12843 pcabs 12844 pcgcd1 12846 pcz 12850 pcprmpw2 12851 pcprmpw 12852 dvdsprmpweqle 12855 difsqpwdvds 12856 pcaddlem 12857 pcadd 12858 pcmpt 12861 pockthg 12875 4sqlem2 12907 4sqlem4 12910 mul4sq 12912 mnd1id 13484 0subm 13512 mulgnn0p1 13665 mulgnn0ass 13690 dvreq1 14100 nzrunit 14146 rrgeq0 14223 domneq0 14230 lmodfopnelem2 14283 lss1d 14341 lspsneq0 14384 znidom 14615 znunit 14617 znrrg 14618 istopon 14681 eltg3 14725 tgidm 14742 restbasg 14836 tgrest 14837 tgcn 14876 cnconst 14902 lmss 14914 txbas 14926 txbasval 14935 upxp 14940 blssps 15095 blss 15096 metrest 15174 blssioo 15221 elcncf1di 15247 elply2 15403 plyf 15405 dvdsppwf1o 15657 perfectlem2 15668 perfect 15669 lgsmod 15699 lgsne0 15711 lgsdirnn0 15720 gausslemma2dlem1a 15731 gausslemma2dlem6 15740 lgseisenlem2 15744 lgsquadlem1 15750 lgsquadlem2 15751 2lgslem1b 15762 2sqlem2 15788 mul2sq 15789 2sqlem7 15794 lpvtx 15873 usgredgop 15965 bj-peano4 16276 |
| Copyright terms: Public domain | W3C validator |