Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl5ibrcom | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
Ref | Expression |
---|---|
syl5ibr.1 | |
syl5ibr.2 |
Ref | Expression |
---|---|
syl5ibrcom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ibr.1 | . . 3 | |
2 | syl5ibr.2 | . . 3 | |
3 | 1, 2 | syl5ibr 155 | . 2 |
4 | 3 | com12 30 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimprcd 159 elsn2g 3616 preqr1g 3753 opth1 4221 euotd 4239 tz7.2 4339 reusv3 4445 alxfr 4446 reuhypd 4456 ordsucim 4484 suc11g 4541 nlimsucg 4550 xpsspw 4723 funcnvuni 5267 fvmptdv2 5585 fsn 5668 fconst2g 5711 funfvima 5727 foco2 5733 isores3 5794 eusvobj2 5839 ovmpodv2 5986 ovelrn 6001 f1opw2 6055 suppssfv 6057 suppssov1 6058 nnmordi 6495 nnmord 6496 qsss 6572 eroveu 6604 th3qlem1 6615 mapsncnv 6673 elixpsn 6713 ixpsnf1o 6714 en1bg 6778 mapxpen 6826 en1eqsnbi 6926 updjud 7059 addnidpig 7298 enq0tr 7396 prcdnql 7446 prcunqu 7447 genipv 7471 genpelvl 7474 genpelvu 7475 distrlem5prl 7548 distrlem5pru 7549 aptiprlemu 7602 mulid1 7917 ltne 8004 cnegex 8097 creur 8875 creui 8876 cju 8877 nnsub 8917 un0addcl 9168 un0mulcl 9169 zaddcl 9252 elz2 9283 qmulz 9582 qre 9584 qnegcl 9595 elpqb 9608 xrltne 9770 xlesubadd 9840 iccid 9882 fzsn 10022 fzsuc2 10035 fz1sbc 10052 elfzp12 10055 modqmuladd 10322 bcval5 10697 bcpasc 10700 hashprg 10743 hashfzo 10757 shftlem 10780 replim 10823 sqrtsq 11008 absle 11053 maxabslemval 11172 negfi 11191 xrmaxiflemval 11213 summodclem2 11345 summodc 11346 zsumdc 11347 fsum3 11350 fsummulc2 11411 fsum00 11425 isumsplit 11454 prodmodclem2 11540 prodmodc 11541 zproddc 11542 fprodseq 11546 prodsnf 11555 fzo0dvdseq 11817 divalgmod 11886 gcdabs1 11944 dvdsgcd 11967 dvdsmulgcd 11980 lcmgcdeq 12037 isprm2lem 12070 dvdsprime 12076 coprm 12098 prmdvdsexpr 12104 rpexp 12107 phibndlem 12170 dfphi2 12174 hashgcdlem 12192 odzdvds 12199 nnoddn2prm 12214 pythagtriplem1 12219 pceulem 12248 pcqmul 12257 pcqcl 12260 pcxnn0cl 12264 pcxcl 12265 pcneg 12278 pcabs 12279 pcgcd1 12281 pcz 12285 pcprmpw2 12286 pcprmpw 12287 dvdsprmpweqle 12290 difsqpwdvds 12291 pcaddlem 12292 pcadd 12293 pcmpt 12295 pockthg 12309 4sqlem2 12341 4sqlem4 12344 mul4sq 12346 mnd1id 12680 0subm 12702 istopon 12805 eltg3 12851 tgidm 12868 restbasg 12962 tgrest 12963 tgcn 13002 cnconst 13028 lmss 13040 txbas 13052 txbasval 13061 upxp 13066 blssps 13221 blss 13222 metrest 13300 blssioo 13339 elcncf1di 13360 lgsmod 13721 lgsne0 13733 lgsdirnn0 13742 2sqlem2 13745 mul2sq 13746 2sqlem7 13751 bj-peano4 13990 |
Copyright terms: Public domain | W3C validator |