![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5ibrcom | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
Ref | Expression |
---|---|
imbitrrid.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
imbitrrid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5ibrcom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbitrrid.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | imbitrrid.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | imbitrrid 156 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | com12 30 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimprcd 160 elsn2g 3651 preqr1g 3792 opth1 4265 euotd 4283 tz7.2 4385 reusv3 4491 alxfr 4492 reuhypd 4502 ordsucim 4532 suc11g 4589 nlimsucg 4598 xpsspw 4771 funcnvuni 5323 fvmptdv2 5647 fsn 5730 fconst2g 5773 funfvima 5790 foco2 5796 isores3 5858 eusvobj2 5904 ovmpodv2 6052 ovelrn 6067 f1opw2 6124 suppssfv 6126 suppssov1 6127 nnmordi 6569 nnmord 6570 qsss 6648 eroveu 6680 th3qlem1 6691 mapsncnv 6749 elixpsn 6789 ixpsnf1o 6790 en1bg 6854 pw2f1odclem 6890 mapxpen 6904 en1eqsnbi 7008 updjud 7141 addnidpig 7396 enq0tr 7494 prcdnql 7544 prcunqu 7545 genipv 7569 genpelvl 7572 genpelvu 7573 distrlem5prl 7646 distrlem5pru 7647 aptiprlemu 7700 mulrid 8016 ltne 8104 cnegex 8197 creur 8978 creui 8979 cju 8980 nnsub 9021 un0addcl 9273 un0mulcl 9274 zaddcl 9357 elz2 9388 qmulz 9688 qre 9690 qnegcl 9701 elpqb 9715 xrltne 9879 xlesubadd 9949 iccid 9991 fzsn 10132 fzsuc2 10145 fz1sbc 10162 elfzp12 10165 modqmuladd 10437 bcval5 10834 bcpasc 10837 hashprg 10879 hashfzo 10893 shftlem 10960 replim 11003 sqrtsq 11188 absle 11233 maxabslemval 11352 negfi 11371 xrmaxiflemval 11393 summodclem2 11525 summodc 11526 zsumdc 11527 fsum3 11530 fsummulc2 11591 fsum00 11605 isumsplit 11634 prodmodclem2 11720 prodmodc 11721 zproddc 11722 fprodseq 11726 prodsnf 11735 fzo0dvdseq 11999 divalgmod 12068 gcdabs1 12126 dvdsgcd 12149 dvdsmulgcd 12162 lcmgcdeq 12221 isprm2lem 12254 dvdsprime 12260 coprm 12282 prmdvdsexpr 12288 rpexp 12291 phibndlem 12354 dfphi2 12358 hashgcdlem 12376 odzdvds 12383 nnoddn2prm 12398 pythagtriplem1 12403 pceulem 12432 pcqmul 12441 pcqcl 12444 pcxnn0cl 12448 pcxcl 12449 pcneg 12463 pcabs 12464 pcgcd1 12466 pcz 12470 pcprmpw2 12471 pcprmpw 12472 dvdsprmpweqle 12475 difsqpwdvds 12476 pcaddlem 12477 pcadd 12478 pcmpt 12481 pockthg 12495 4sqlem2 12527 4sqlem4 12530 mul4sq 12532 mnd1id 13028 0subm 13056 mulgnn0p1 13203 mulgnn0ass 13228 dvreq1 13638 nzrunit 13684 rrgeq0 13761 domneq0 13768 lmodfopnelem2 13821 lss1d 13879 lspsneq0 13922 znidom 14145 znunit 14147 znrrg 14148 istopon 14181 eltg3 14225 tgidm 14242 restbasg 14336 tgrest 14337 tgcn 14376 cnconst 14402 lmss 14414 txbas 14426 txbasval 14435 upxp 14440 blssps 14595 blss 14596 metrest 14674 blssioo 14713 elcncf1di 14734 elply2 14881 plyf 14883 lgsmod 15142 lgsne0 15154 lgsdirnn0 15163 gausslemma2dlem1a 15174 gausslemma2dlem6 15183 lgseisenlem2 15187 lgsquadlem1 15191 2sqlem2 15202 mul2sq 15203 2sqlem7 15208 bj-peano4 15447 |
Copyright terms: Public domain | W3C validator |