![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5ibrcom | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
Ref | Expression |
---|---|
imbitrrid.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
imbitrrid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5ibrcom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbitrrid.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | imbitrrid.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | imbitrrid 156 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | com12 30 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimprcd 160 elsn2g 3652 preqr1g 3793 opth1 4266 euotd 4284 tz7.2 4386 reusv3 4492 alxfr 4493 reuhypd 4503 ordsucim 4533 suc11g 4590 nlimsucg 4599 xpsspw 4772 funcnvuni 5324 fvmptdv2 5648 fsn 5731 fconst2g 5774 funfvima 5791 foco2 5797 isores3 5859 eusvobj2 5905 ovmpodv2 6053 ovelrn 6069 f1opw2 6126 suppssfv 6128 suppssov1 6129 nnmordi 6571 nnmord 6572 qsss 6650 eroveu 6682 th3qlem1 6693 mapsncnv 6751 elixpsn 6791 ixpsnf1o 6792 en1bg 6856 pw2f1odclem 6892 mapxpen 6906 en1eqsnbi 7010 updjud 7143 addnidpig 7398 enq0tr 7496 prcdnql 7546 prcunqu 7547 genipv 7571 genpelvl 7574 genpelvu 7575 distrlem5prl 7648 distrlem5pru 7649 aptiprlemu 7702 mulrid 8018 ltne 8106 cnegex 8199 creur 8980 creui 8981 cju 8982 nnsub 9023 un0addcl 9276 un0mulcl 9277 zaddcl 9360 elz2 9391 qmulz 9691 qre 9693 qnegcl 9704 elpqb 9718 xrltne 9882 xlesubadd 9952 iccid 9994 fzsn 10135 fzsuc2 10148 fz1sbc 10165 elfzp12 10168 modqmuladd 10440 bcval5 10837 bcpasc 10840 hashprg 10882 hashfzo 10896 shftlem 10963 replim 11006 sqrtsq 11191 absle 11236 maxabslemval 11355 negfi 11374 xrmaxiflemval 11396 summodclem2 11528 summodc 11529 zsumdc 11530 fsum3 11533 fsummulc2 11594 fsum00 11608 isumsplit 11637 prodmodclem2 11723 prodmodc 11724 zproddc 11725 fprodseq 11729 prodsnf 11738 fzo0dvdseq 12002 divalgmod 12071 gcdabs1 12129 dvdsgcd 12152 dvdsmulgcd 12165 lcmgcdeq 12224 isprm2lem 12257 dvdsprime 12263 coprm 12285 prmdvdsexpr 12291 rpexp 12294 phibndlem 12357 dfphi2 12361 hashgcdlem 12379 odzdvds 12386 nnoddn2prm 12401 pythagtriplem1 12406 pceulem 12435 pcqmul 12444 pcqcl 12447 pcxnn0cl 12451 pcxcl 12452 pcneg 12466 pcabs 12467 pcgcd1 12469 pcz 12473 pcprmpw2 12474 pcprmpw 12475 dvdsprmpweqle 12478 difsqpwdvds 12479 pcaddlem 12480 pcadd 12481 pcmpt 12484 pockthg 12498 4sqlem2 12530 4sqlem4 12533 mul4sq 12535 mnd1id 13031 0subm 13059 mulgnn0p1 13206 mulgnn0ass 13231 dvreq1 13641 nzrunit 13687 rrgeq0 13764 domneq0 13771 lmodfopnelem2 13824 lss1d 13882 lspsneq0 13925 znidom 14156 znunit 14158 znrrg 14159 istopon 14192 eltg3 14236 tgidm 14253 restbasg 14347 tgrest 14348 tgcn 14387 cnconst 14413 lmss 14425 txbas 14437 txbasval 14446 upxp 14451 blssps 14606 blss 14607 metrest 14685 blssioo 14732 elcncf1di 14758 elply2 14914 plyf 14916 lgsmod 15183 lgsne0 15195 lgsdirnn0 15204 gausslemma2dlem1a 15215 gausslemma2dlem6 15224 lgseisenlem2 15228 lgsquadlem1 15234 lgsquadlem2 15235 2lgslem1b 15246 2sqlem2 15272 mul2sq 15273 2sqlem7 15278 bj-peano4 15517 |
Copyright terms: Public domain | W3C validator |