| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibrcom | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 |
|
| imbitrrid.2 |
|
| Ref | Expression |
|---|---|
| syl5ibrcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 |
. . 3
| |
| 2 | imbitrrid.2 |
. . 3
| |
| 3 | 1, 2 | imbitrrid 156 |
. 2
|
| 4 | 3 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimprcd 160 elsn2g 3665 preqr1g 3806 opth1 4279 euotd 4298 tz7.2 4400 reusv3 4506 alxfr 4507 reuhypd 4517 ordsucim 4547 suc11g 4604 nlimsucg 4613 xpsspw 4786 funcnvuni 5342 fvmptdv2 5668 fsn 5751 fconst2g 5798 funfvima 5815 foco2 5821 isores3 5883 eusvobj2 5929 ovmpodv2 6078 ovelrn 6094 f1opw2 6151 suppssfv 6153 suppssov1 6154 nnmordi 6601 nnmord 6602 qsss 6680 eroveu 6712 th3qlem1 6723 mapsncnv 6781 elixpsn 6821 ixpsnf1o 6822 en1bg 6891 pw2f1odclem 6930 mapxpen 6944 en1eqsnbi 7050 updjud 7183 addnidpig 7448 enq0tr 7546 prcdnql 7596 prcunqu 7597 genipv 7621 genpelvl 7624 genpelvu 7625 distrlem5prl 7698 distrlem5pru 7699 aptiprlemu 7752 mulrid 8068 ltne 8156 cnegex 8249 creur 9031 creui 9032 cju 9033 nnsub 9074 un0addcl 9327 un0mulcl 9328 zaddcl 9411 elz2 9443 qmulz 9743 qre 9745 qnegcl 9756 elpqb 9770 xrltne 9934 xlesubadd 10004 iccid 10046 fzsn 10187 fzsuc2 10200 fz1sbc 10217 elfzp12 10220 modqmuladd 10509 bcval5 10906 bcpasc 10909 hashprg 10951 hashfzo 10965 wrdl1s1 11082 shftlem 11098 replim 11141 sqrtsq 11326 absle 11371 maxabslemval 11490 negfi 11510 xrmaxiflemval 11532 summodclem2 11664 summodc 11665 zsumdc 11666 fsum3 11669 fsummulc2 11730 fsum00 11744 isumsplit 11773 prodmodclem2 11859 prodmodc 11860 zproddc 11861 fprodseq 11865 prodsnf 11874 fzo0dvdseq 12139 divalgmod 12209 gcdabs1 12281 dvdsgcd 12304 dvdsmulgcd 12317 lcmgcdeq 12376 isprm2lem 12409 dvdsprime 12415 coprm 12437 prmdvdsexpr 12443 rpexp 12446 phibndlem 12509 dfphi2 12513 hashgcdlem 12531 odzdvds 12539 nnoddn2prm 12554 pythagtriplem1 12559 pceulem 12588 pcqmul 12597 pcqcl 12600 pcxnn0cl 12604 pcxcl 12605 pcneg 12619 pcabs 12620 pcgcd1 12622 pcz 12626 pcprmpw2 12627 pcprmpw 12628 dvdsprmpweqle 12631 difsqpwdvds 12632 pcaddlem 12633 pcadd 12634 pcmpt 12637 pockthg 12651 4sqlem2 12683 4sqlem4 12686 mul4sq 12688 mnd1id 13259 0subm 13287 mulgnn0p1 13440 mulgnn0ass 13465 dvreq1 13875 nzrunit 13921 rrgeq0 13998 domneq0 14005 lmodfopnelem2 14058 lss1d 14116 lspsneq0 14159 znidom 14390 znunit 14392 znrrg 14393 istopon 14456 eltg3 14500 tgidm 14517 restbasg 14611 tgrest 14612 tgcn 14651 cnconst 14677 lmss 14689 txbas 14701 txbasval 14710 upxp 14715 blssps 14870 blss 14871 metrest 14949 blssioo 14996 elcncf1di 15022 elply2 15178 plyf 15180 dvdsppwf1o 15432 perfectlem2 15443 perfect 15444 lgsmod 15474 lgsne0 15486 lgsdirnn0 15495 gausslemma2dlem1a 15506 gausslemma2dlem6 15515 lgseisenlem2 15519 lgsquadlem1 15525 lgsquadlem2 15526 2lgslem1b 15537 2sqlem2 15563 mul2sq 15564 2sqlem7 15569 bj-peano4 15853 |
| Copyright terms: Public domain | W3C validator |