| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibrcom | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 |
|
| imbitrrid.2 |
|
| Ref | Expression |
|---|---|
| syl5ibrcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 |
. . 3
| |
| 2 | imbitrrid.2 |
. . 3
| |
| 3 | 1, 2 | imbitrrid 156 |
. 2
|
| 4 | 3 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimprcd 160 elsn2g 3656 preqr1g 3797 opth1 4270 euotd 4288 tz7.2 4390 reusv3 4496 alxfr 4497 reuhypd 4507 ordsucim 4537 suc11g 4594 nlimsucg 4603 xpsspw 4776 funcnvuni 5328 fvmptdv2 5654 fsn 5737 fconst2g 5780 funfvima 5797 foco2 5803 isores3 5865 eusvobj2 5911 ovmpodv2 6060 ovelrn 6076 f1opw2 6133 suppssfv 6135 suppssov1 6136 nnmordi 6583 nnmord 6584 qsss 6662 eroveu 6694 th3qlem1 6705 mapsncnv 6763 elixpsn 6803 ixpsnf1o 6804 en1bg 6868 pw2f1odclem 6904 mapxpen 6918 en1eqsnbi 7024 updjud 7157 addnidpig 7420 enq0tr 7518 prcdnql 7568 prcunqu 7569 genipv 7593 genpelvl 7596 genpelvu 7597 distrlem5prl 7670 distrlem5pru 7671 aptiprlemu 7724 mulrid 8040 ltne 8128 cnegex 8221 creur 9003 creui 9004 cju 9005 nnsub 9046 un0addcl 9299 un0mulcl 9300 zaddcl 9383 elz2 9414 qmulz 9714 qre 9716 qnegcl 9727 elpqb 9741 xrltne 9905 xlesubadd 9975 iccid 10017 fzsn 10158 fzsuc2 10171 fz1sbc 10188 elfzp12 10191 modqmuladd 10475 bcval5 10872 bcpasc 10875 hashprg 10917 hashfzo 10931 shftlem 10998 replim 11041 sqrtsq 11226 absle 11271 maxabslemval 11390 negfi 11410 xrmaxiflemval 11432 summodclem2 11564 summodc 11565 zsumdc 11566 fsum3 11569 fsummulc2 11630 fsum00 11644 isumsplit 11673 prodmodclem2 11759 prodmodc 11760 zproddc 11761 fprodseq 11765 prodsnf 11774 fzo0dvdseq 12039 divalgmod 12109 gcdabs1 12181 dvdsgcd 12204 dvdsmulgcd 12217 lcmgcdeq 12276 isprm2lem 12309 dvdsprime 12315 coprm 12337 prmdvdsexpr 12343 rpexp 12346 phibndlem 12409 dfphi2 12413 hashgcdlem 12431 odzdvds 12439 nnoddn2prm 12454 pythagtriplem1 12459 pceulem 12488 pcqmul 12497 pcqcl 12500 pcxnn0cl 12504 pcxcl 12505 pcneg 12519 pcabs 12520 pcgcd1 12522 pcz 12526 pcprmpw2 12527 pcprmpw 12528 dvdsprmpweqle 12531 difsqpwdvds 12532 pcaddlem 12533 pcadd 12534 pcmpt 12537 pockthg 12551 4sqlem2 12583 4sqlem4 12586 mul4sq 12588 mnd1id 13158 0subm 13186 mulgnn0p1 13339 mulgnn0ass 13364 dvreq1 13774 nzrunit 13820 rrgeq0 13897 domneq0 13904 lmodfopnelem2 13957 lss1d 14015 lspsneq0 14058 znidom 14289 znunit 14291 znrrg 14292 istopon 14333 eltg3 14377 tgidm 14394 restbasg 14488 tgrest 14489 tgcn 14528 cnconst 14554 lmss 14566 txbas 14578 txbasval 14587 upxp 14592 blssps 14747 blss 14748 metrest 14826 blssioo 14873 elcncf1di 14899 elply2 15055 plyf 15057 dvdsppwf1o 15309 perfectlem2 15320 perfect 15321 lgsmod 15351 lgsne0 15363 lgsdirnn0 15372 gausslemma2dlem1a 15383 gausslemma2dlem6 15392 lgseisenlem2 15396 lgsquadlem1 15402 lgsquadlem2 15403 2lgslem1b 15414 2sqlem2 15440 mul2sq 15441 2sqlem7 15446 bj-peano4 15685 |
| Copyright terms: Public domain | W3C validator |