| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibrcom | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 |
|
| imbitrrid.2 |
|
| Ref | Expression |
|---|---|
| syl5ibrcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 |
. . 3
| |
| 2 | imbitrrid.2 |
. . 3
| |
| 3 | 1, 2 | imbitrrid 156 |
. 2
|
| 4 | 3 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimprcd 160 elsn2g 3656 preqr1g 3797 opth1 4270 euotd 4288 tz7.2 4390 reusv3 4496 alxfr 4497 reuhypd 4507 ordsucim 4537 suc11g 4594 nlimsucg 4603 xpsspw 4776 funcnvuni 5328 fvmptdv2 5652 fsn 5735 fconst2g 5778 funfvima 5795 foco2 5801 isores3 5863 eusvobj2 5909 ovmpodv2 6058 ovelrn 6074 f1opw2 6131 suppssfv 6133 suppssov1 6134 nnmordi 6576 nnmord 6577 qsss 6655 eroveu 6687 th3qlem1 6698 mapsncnv 6756 elixpsn 6796 ixpsnf1o 6797 en1bg 6861 pw2f1odclem 6897 mapxpen 6911 en1eqsnbi 7017 updjud 7150 addnidpig 7406 enq0tr 7504 prcdnql 7554 prcunqu 7555 genipv 7579 genpelvl 7582 genpelvu 7583 distrlem5prl 7656 distrlem5pru 7657 aptiprlemu 7710 mulrid 8026 ltne 8114 cnegex 8207 creur 8989 creui 8990 cju 8991 nnsub 9032 un0addcl 9285 un0mulcl 9286 zaddcl 9369 elz2 9400 qmulz 9700 qre 9702 qnegcl 9713 elpqb 9727 xrltne 9891 xlesubadd 9961 iccid 10003 fzsn 10144 fzsuc2 10157 fz1sbc 10174 elfzp12 10177 modqmuladd 10461 bcval5 10858 bcpasc 10861 hashprg 10903 hashfzo 10917 shftlem 10984 replim 11027 sqrtsq 11212 absle 11257 maxabslemval 11376 negfi 11396 xrmaxiflemval 11418 summodclem2 11550 summodc 11551 zsumdc 11552 fsum3 11555 fsummulc2 11616 fsum00 11630 isumsplit 11659 prodmodclem2 11745 prodmodc 11746 zproddc 11747 fprodseq 11751 prodsnf 11760 fzo0dvdseq 12025 divalgmod 12095 gcdabs1 12167 dvdsgcd 12190 dvdsmulgcd 12203 lcmgcdeq 12262 isprm2lem 12295 dvdsprime 12301 coprm 12323 prmdvdsexpr 12329 rpexp 12332 phibndlem 12395 dfphi2 12399 hashgcdlem 12417 odzdvds 12425 nnoddn2prm 12440 pythagtriplem1 12445 pceulem 12474 pcqmul 12483 pcqcl 12486 pcxnn0cl 12490 pcxcl 12491 pcneg 12505 pcabs 12506 pcgcd1 12508 pcz 12512 pcprmpw2 12513 pcprmpw 12514 dvdsprmpweqle 12517 difsqpwdvds 12518 pcaddlem 12519 pcadd 12520 pcmpt 12523 pockthg 12537 4sqlem2 12569 4sqlem4 12572 mul4sq 12574 mnd1id 13114 0subm 13142 mulgnn0p1 13289 mulgnn0ass 13314 dvreq1 13724 nzrunit 13770 rrgeq0 13847 domneq0 13854 lmodfopnelem2 13907 lss1d 13965 lspsneq0 14008 znidom 14239 znunit 14241 znrrg 14242 istopon 14275 eltg3 14319 tgidm 14336 restbasg 14430 tgrest 14431 tgcn 14470 cnconst 14496 lmss 14508 txbas 14520 txbasval 14529 upxp 14534 blssps 14689 blss 14690 metrest 14768 blssioo 14815 elcncf1di 14841 elply2 14997 plyf 14999 dvdsppwf1o 15251 perfectlem2 15262 perfect 15263 lgsmod 15293 lgsne0 15305 lgsdirnn0 15314 gausslemma2dlem1a 15325 gausslemma2dlem6 15334 lgseisenlem2 15338 lgsquadlem1 15344 lgsquadlem2 15345 2lgslem1b 15356 2sqlem2 15382 mul2sq 15383 2sqlem7 15388 bj-peano4 15627 |
| Copyright terms: Public domain | W3C validator |