![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5ibrcom | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
Ref | Expression |
---|---|
imbitrrid.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
imbitrrid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5ibrcom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbitrrid.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | imbitrrid.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | imbitrrid 156 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | com12 30 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimprcd 160 elsn2g 3627 preqr1g 3768 opth1 4238 euotd 4256 tz7.2 4356 reusv3 4462 alxfr 4463 reuhypd 4473 ordsucim 4501 suc11g 4558 nlimsucg 4567 xpsspw 4740 funcnvuni 5287 fvmptdv2 5607 fsn 5690 fconst2g 5733 funfvima 5750 foco2 5756 isores3 5818 eusvobj2 5863 ovmpodv2 6010 ovelrn 6025 f1opw2 6079 suppssfv 6081 suppssov1 6082 nnmordi 6519 nnmord 6520 qsss 6596 eroveu 6628 th3qlem1 6639 mapsncnv 6697 elixpsn 6737 ixpsnf1o 6738 en1bg 6802 mapxpen 6850 en1eqsnbi 6950 updjud 7083 addnidpig 7337 enq0tr 7435 prcdnql 7485 prcunqu 7486 genipv 7510 genpelvl 7513 genpelvu 7514 distrlem5prl 7587 distrlem5pru 7588 aptiprlemu 7641 mulrid 7956 ltne 8044 cnegex 8137 creur 8918 creui 8919 cju 8920 nnsub 8960 un0addcl 9211 un0mulcl 9212 zaddcl 9295 elz2 9326 qmulz 9625 qre 9627 qnegcl 9638 elpqb 9651 xrltne 9815 xlesubadd 9885 iccid 9927 fzsn 10068 fzsuc2 10081 fz1sbc 10098 elfzp12 10101 modqmuladd 10368 bcval5 10745 bcpasc 10748 hashprg 10790 hashfzo 10804 shftlem 10827 replim 10870 sqrtsq 11055 absle 11100 maxabslemval 11219 negfi 11238 xrmaxiflemval 11260 summodclem2 11392 summodc 11393 zsumdc 11394 fsum3 11397 fsummulc2 11458 fsum00 11472 isumsplit 11501 prodmodclem2 11587 prodmodc 11588 zproddc 11589 fprodseq 11593 prodsnf 11602 fzo0dvdseq 11865 divalgmod 11934 gcdabs1 11992 dvdsgcd 12015 dvdsmulgcd 12028 lcmgcdeq 12085 isprm2lem 12118 dvdsprime 12124 coprm 12146 prmdvdsexpr 12152 rpexp 12155 phibndlem 12218 dfphi2 12222 hashgcdlem 12240 odzdvds 12247 nnoddn2prm 12262 pythagtriplem1 12267 pceulem 12296 pcqmul 12305 pcqcl 12308 pcxnn0cl 12312 pcxcl 12313 pcneg 12326 pcabs 12327 pcgcd1 12329 pcz 12333 pcprmpw2 12334 pcprmpw 12335 dvdsprmpweqle 12338 difsqpwdvds 12339 pcaddlem 12340 pcadd 12341 pcmpt 12343 pockthg 12357 4sqlem2 12389 4sqlem4 12392 mul4sq 12394 mnd1id 12853 0subm 12876 mulgnn0p1 12999 mulgnn0ass 13024 dvreq1 13316 nzrunit 13334 lmodfopnelem2 13420 lss1d 13475 lspsneq0 13517 istopon 13598 eltg3 13642 tgidm 13659 restbasg 13753 tgrest 13754 tgcn 13793 cnconst 13819 lmss 13831 txbas 13843 txbasval 13852 upxp 13857 blssps 14012 blss 14013 metrest 14091 blssioo 14130 elcncf1di 14151 lgsmod 14512 lgsne0 14524 lgsdirnn0 14533 lgseisenlem2 14536 2sqlem2 14547 mul2sq 14548 2sqlem7 14553 bj-peano4 14792 |
Copyright terms: Public domain | W3C validator |