Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl5ibrcom | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
Ref | Expression |
---|---|
syl5ibr.1 | |
syl5ibr.2 |
Ref | Expression |
---|---|
syl5ibrcom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ibr.1 | . . 3 | |
2 | syl5ibr.2 | . . 3 | |
3 | 1, 2 | syl5ibr 155 | . 2 |
4 | 3 | com12 30 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimprcd 159 elsn2g 3593 preqr1g 3729 opth1 4195 euotd 4213 tz7.2 4313 reusv3 4418 alxfr 4419 reuhypd 4429 ordsucim 4457 suc11g 4514 nlimsucg 4523 xpsspw 4695 funcnvuni 5236 fvmptdv2 5554 fsn 5636 fconst2g 5679 funfvima 5693 foco2 5699 isores3 5760 eusvobj2 5804 ovmpodv2 5948 ovelrn 5963 f1opw2 6020 suppssfv 6022 suppssov1 6023 nnmordi 6456 nnmord 6457 qsss 6532 eroveu 6564 th3qlem1 6575 mapsncnv 6633 elixpsn 6673 ixpsnf1o 6674 en1bg 6738 mapxpen 6786 en1eqsnbi 6886 updjud 7016 addnidpig 7239 enq0tr 7337 prcdnql 7387 prcunqu 7388 genipv 7412 genpelvl 7415 genpelvu 7416 distrlem5prl 7489 distrlem5pru 7490 aptiprlemu 7543 mulid1 7858 ltne 7945 cnegex 8036 creur 8813 creui 8814 cju 8815 nnsub 8855 un0addcl 9106 un0mulcl 9107 zaddcl 9190 elz2 9218 qmulz 9514 qre 9516 qnegcl 9527 elpqb 9540 xrltne 9699 xlesubadd 9769 iccid 9811 fzsn 9950 fzsuc2 9963 fz1sbc 9980 elfzp12 9983 modqmuladd 10247 bcval5 10619 bcpasc 10622 hashprg 10664 hashfzo 10678 shftlem 10698 replim 10741 sqrtsq 10926 absle 10971 maxabslemval 11090 negfi 11109 xrmaxiflemval 11129 summodclem2 11261 summodc 11262 zsumdc 11263 fsum3 11266 fsummulc2 11327 fsum00 11341 isumsplit 11370 prodmodclem2 11456 prodmodc 11457 zproddc 11458 fprodseq 11462 prodsnf 11471 fzo0dvdseq 11730 divalgmod 11799 gcdabs1 11853 dvdsgcd 11876 dvdsmulgcd 11889 lcmgcdeq 11940 isprm2lem 11973 dvdsprime 11979 coprm 11998 prmdvdsexpr 12004 rpexp 12007 phibndlem 12068 dfphi2 12072 hashgcdlem 12090 istopon 12371 eltg3 12417 tgidm 12434 restbasg 12528 tgrest 12529 tgcn 12568 cnconst 12594 lmss 12606 txbas 12618 txbasval 12627 upxp 12632 blssps 12787 blss 12788 metrest 12866 blssioo 12905 elcncf1di 12926 bj-peano4 13490 |
Copyright terms: Public domain | W3C validator |