| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibrcom | Unicode version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 20-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrrid.1 |
|
| imbitrrid.2 |
|
| Ref | Expression |
|---|---|
| syl5ibrcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrrid.1 |
. . 3
| |
| 2 | imbitrrid.2 |
. . 3
| |
| 3 | 1, 2 | imbitrrid 156 |
. 2
|
| 4 | 3 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimprcd 160 elsn2g 3666 preqr1g 3807 opth1 4280 euotd 4299 tz7.2 4401 reusv3 4507 alxfr 4508 reuhypd 4518 ordsucim 4548 suc11g 4605 nlimsucg 4614 xpsspw 4787 funcnvuni 5343 fvmptdv2 5669 fsn 5752 fconst2g 5799 funfvima 5816 foco2 5822 isores3 5884 eusvobj2 5930 ovmpodv2 6079 ovelrn 6095 f1opw2 6152 suppssfv 6154 suppssov1 6155 nnmordi 6602 nnmord 6603 qsss 6681 eroveu 6713 th3qlem1 6724 mapsncnv 6782 elixpsn 6822 ixpsnf1o 6823 en1bg 6892 pw2f1odclem 6931 mapxpen 6945 en1eqsnbi 7051 updjud 7184 addnidpig 7449 enq0tr 7547 prcdnql 7597 prcunqu 7598 genipv 7622 genpelvl 7625 genpelvu 7626 distrlem5prl 7699 distrlem5pru 7700 aptiprlemu 7753 mulrid 8069 ltne 8157 cnegex 8250 creur 9032 creui 9033 cju 9034 nnsub 9075 un0addcl 9328 un0mulcl 9329 zaddcl 9412 elz2 9444 qmulz 9744 qre 9746 qnegcl 9757 elpqb 9771 xrltne 9935 xlesubadd 10005 iccid 10047 fzsn 10188 fzsuc2 10201 fz1sbc 10218 elfzp12 10221 modqmuladd 10511 bcval5 10908 bcpasc 10911 hashprg 10953 hashfzo 10967 wrdl1s1 11084 shftlem 11127 replim 11170 sqrtsq 11355 absle 11400 maxabslemval 11519 negfi 11539 xrmaxiflemval 11561 summodclem2 11693 summodc 11694 zsumdc 11695 fsum3 11698 fsummulc2 11759 fsum00 11773 isumsplit 11802 prodmodclem2 11888 prodmodc 11889 zproddc 11890 fprodseq 11894 prodsnf 11903 fzo0dvdseq 12168 divalgmod 12238 gcdabs1 12310 dvdsgcd 12333 dvdsmulgcd 12346 lcmgcdeq 12405 isprm2lem 12438 dvdsprime 12444 coprm 12466 prmdvdsexpr 12472 rpexp 12475 phibndlem 12538 dfphi2 12542 hashgcdlem 12560 odzdvds 12568 nnoddn2prm 12583 pythagtriplem1 12588 pceulem 12617 pcqmul 12626 pcqcl 12629 pcxnn0cl 12633 pcxcl 12634 pcneg 12648 pcabs 12649 pcgcd1 12651 pcz 12655 pcprmpw2 12656 pcprmpw 12657 dvdsprmpweqle 12660 difsqpwdvds 12661 pcaddlem 12662 pcadd 12663 pcmpt 12666 pockthg 12680 4sqlem2 12712 4sqlem4 12715 mul4sq 12717 mnd1id 13288 0subm 13316 mulgnn0p1 13469 mulgnn0ass 13494 dvreq1 13904 nzrunit 13950 rrgeq0 14027 domneq0 14034 lmodfopnelem2 14087 lss1d 14145 lspsneq0 14188 znidom 14419 znunit 14421 znrrg 14422 istopon 14485 eltg3 14529 tgidm 14546 restbasg 14640 tgrest 14641 tgcn 14680 cnconst 14706 lmss 14718 txbas 14730 txbasval 14739 upxp 14744 blssps 14899 blss 14900 metrest 14978 blssioo 15025 elcncf1di 15051 elply2 15207 plyf 15209 dvdsppwf1o 15461 perfectlem2 15472 perfect 15473 lgsmod 15503 lgsne0 15515 lgsdirnn0 15524 gausslemma2dlem1a 15535 gausslemma2dlem6 15544 lgseisenlem2 15548 lgsquadlem1 15554 lgsquadlem2 15555 2lgslem1b 15566 2sqlem2 15592 mul2sq 15593 2sqlem7 15598 bj-peano4 15891 |
| Copyright terms: Public domain | W3C validator |