ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylsyld Unicode version

Theorem sylsyld 58
Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.)
Hypotheses
Ref Expression
sylsyld.1  |-  ( ph  ->  ps )
sylsyld.2  |-  ( ph  ->  ( ch  ->  th )
)
sylsyld.3  |-  ( ps 
->  ( th  ->  ta ) )
Assertion
Ref Expression
sylsyld  |-  ( ph  ->  ( ch  ->  ta ) )

Proof of Theorem sylsyld
StepHypRef Expression
1 sylsyld.2 . 2  |-  ( ph  ->  ( ch  ->  th )
)
2 sylsyld.1 . . 3  |-  ( ph  ->  ps )
3 sylsyld.3 . . 3  |-  ( ps 
->  ( th  ->  ta ) )
42, 3syl 14 . 2  |-  ( ph  ->  ( th  ->  ta ) )
51, 4syld 45 1  |-  ( ph  ->  ( ch  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  ax10o  1708  a16g  1857  rspc2vd  3117  trintssm  4103  funimaexglem  5281  smoiun  6280  findcard2  6867  ctssdc  7090  mkvprop  7134  ltexprlemrl  7572  archsr  7744  elfz0ubfz0  10081  ctinf  12385
  Copyright terms: Public domain W3C validator