| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ax16i | Unicode version | ||
| Description: Inference with ax-16 1828 as its conclusion, that does not require ax-10 1519, ax-11 1520, or ax12 1526 for its proof. The hypotheses may be eliminable without one or more of these axioms in special cases. (Contributed by NM, 20-May-2008.) | 
| Ref | Expression | 
|---|---|
| ax16i.1 | 
 | 
| ax16i.2 | 
 | 
| Ref | Expression | 
|---|---|
| ax16i | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-17 1540 | 
. . . 4
 | |
| 2 | ax-17 1540 | 
. . . 4
 | |
| 3 | ax-8 1518 | 
. . . 4
 | |
| 4 | 1, 2, 3 | cbv3h 1757 | 
. . 3
 | 
| 5 | ax-8 1518 | 
. . . . . 6
 | |
| 6 | 5 | spimv 1825 | 
. . . . 5
 | 
| 7 | equid 1715 | 
. . . . . . . 8
 | |
| 8 | ax-8 1518 | 
. . . . . . . 8
 | |
| 9 | 7, 8 | mpi 15 | 
. . . . . . 7
 | 
| 10 | equid 1715 | 
. . . . . . . . 9
 | |
| 11 | ax-8 1518 | 
. . . . . . . . 9
 | |
| 12 | 10, 11 | mpi 15 | 
. . . . . . . 8
 | 
| 13 | ax-8 1518 | 
. . . . . . . 8
 | |
| 14 | 12, 13 | syl 14 | 
. . . . . . 7
 | 
| 15 | 9, 14 | syl5com 29 | 
. . . . . 6
 | 
| 16 | 1, 15 | alimdh 1481 | 
. . . . 5
 | 
| 17 | 6, 16 | mpcom 36 | 
. . . 4
 | 
| 18 | ax-8 1518 | 
. . . . . 6
 | |
| 19 | 10, 18 | mpi 15 | 
. . . . 5
 | 
| 20 | 19 | alimi 1469 | 
. . . 4
 | 
| 21 | 17, 20 | syl 14 | 
. . 3
 | 
| 22 | 4, 21 | syl 14 | 
. 2
 | 
| 23 | ax-17 1540 | 
. . . 4
 | |
| 24 | ax16i.1 | 
. . . . 5
 | |
| 25 | 24 | biimpcd 159 | 
. . . 4
 | 
| 26 | 23, 25 | alimdh 1481 | 
. . 3
 | 
| 27 | ax16i.2 | 
. . . 4
 | |
| 28 | 24 | biimprd 158 | 
. . . . 5
 | 
| 29 | 19, 28 | syl 14 | 
. . . 4
 | 
| 30 | 27, 23, 29 | cbv3h 1757 | 
. . 3
 | 
| 31 | 26, 30 | syl6com 35 | 
. 2
 | 
| 32 | 22, 31 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: ax16ALT 1873 | 
| Copyright terms: Public domain | W3C validator |