Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax16i | Unicode version |
Description: Inference with ax-16 1807 as its conclusion, that does not require ax-10 1498, ax-11 1499, or ax12 1505 for its proof. The hypotheses may be eliminable without one or more of these axioms in special cases. (Contributed by NM, 20-May-2008.) |
Ref | Expression |
---|---|
ax16i.1 | |
ax16i.2 |
Ref | Expression |
---|---|
ax16i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1519 | . . . 4 | |
2 | ax-17 1519 | . . . 4 | |
3 | ax-8 1497 | . . . 4 | |
4 | 1, 2, 3 | cbv3h 1736 | . . 3 |
5 | ax-8 1497 | . . . . . 6 | |
6 | 5 | spimv 1804 | . . . . 5 |
7 | equid 1694 | . . . . . . . 8 | |
8 | ax-8 1497 | . . . . . . . 8 | |
9 | 7, 8 | mpi 15 | . . . . . . 7 |
10 | equid 1694 | . . . . . . . . 9 | |
11 | ax-8 1497 | . . . . . . . . 9 | |
12 | 10, 11 | mpi 15 | . . . . . . . 8 |
13 | ax-8 1497 | . . . . . . . 8 | |
14 | 12, 13 | syl 14 | . . . . . . 7 |
15 | 9, 14 | syl5com 29 | . . . . . 6 |
16 | 1, 15 | alimdh 1460 | . . . . 5 |
17 | 6, 16 | mpcom 36 | . . . 4 |
18 | ax-8 1497 | . . . . . 6 | |
19 | 10, 18 | mpi 15 | . . . . 5 |
20 | 19 | alimi 1448 | . . . 4 |
21 | 17, 20 | syl 14 | . . 3 |
22 | 4, 21 | syl 14 | . 2 |
23 | ax-17 1519 | . . . 4 | |
24 | ax16i.1 | . . . . 5 | |
25 | 24 | biimpcd 158 | . . . 4 |
26 | 23, 25 | alimdh 1460 | . . 3 |
27 | ax16i.2 | . . . 4 | |
28 | 24 | biimprd 157 | . . . . 5 |
29 | 19, 28 | syl 14 | . . . 4 |
30 | 27, 23, 29 | cbv3h 1736 | . . 3 |
31 | 26, 30 | syl6com 35 | . 2 |
32 | 22, 31 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: ax16ALT 1852 |
Copyright terms: Public domain | W3C validator |