ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baibd Unicode version

Theorem baibd 924
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
baibd.1  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
Assertion
Ref Expression
baibd  |-  ( (
ph  /\  ch )  ->  ( ps  <->  th )
)

Proof of Theorem baibd
StepHypRef Expression
1 baibd.1 . 2  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
2 ibar 301 . . 3  |-  ( ch 
->  ( th  <->  ( ch  /\ 
th ) ) )
32bicomd 141 . 2  |-  ( ch 
->  ( ( ch  /\  th )  <->  th ) )
41, 3sylan9bb 462 1  |-  ( (
ph  /\  ch )  ->  ( ps  <->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pw2f1odclem  6904  eluz  9631  elicc4  10032  divalgmodcl  12110  eqglact  13431  eqgid  13432  iscrng2  13647  issubrg3  13879  iscld2  14424  cncnp2m  14551  cnnei  14552  reopnap  14866  cnlimc  14992  2omap  15726
  Copyright terms: Public domain W3C validator