ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baibd Unicode version

Theorem baibd 925
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
baibd.1  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
Assertion
Ref Expression
baibd  |-  ( (
ph  /\  ch )  ->  ( ps  <->  th )
)

Proof of Theorem baibd
StepHypRef Expression
1 baibd.1 . 2  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
2 ibar 301 . . 3  |-  ( ch 
->  ( th  <->  ( ch  /\ 
th ) ) )
32bicomd 141 . 2  |-  ( ch 
->  ( ( ch  /\  th )  <->  th ) )
41, 3sylan9bb 462 1  |-  ( (
ph  /\  ch )  ->  ( ps  <->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pw2f1odclem  6931  eluz  9661  elicc4  10062  s111  11085  divalgmodcl  12239  eqglact  13561  eqgid  13562  iscrng2  13777  issubrg3  14009  iscld2  14576  cncnp2m  14703  cnnei  14704  reopnap  15018  cnlimc  15144  2omap  15932
  Copyright terms: Public domain W3C validator