ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baibd Unicode version

Theorem baibd 925
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
baibd.1  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
Assertion
Ref Expression
baibd  |-  ( (
ph  /\  ch )  ->  ( ps  <->  th )
)

Proof of Theorem baibd
StepHypRef Expression
1 baibd.1 . 2  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
2 ibar 301 . . 3  |-  ( ch 
->  ( th  <->  ( ch  /\ 
th ) ) )
32bicomd 141 . 2  |-  ( ch 
->  ( ( ch  /\  th )  <->  th ) )
41, 3sylan9bb 462 1  |-  ( (
ph  /\  ch )  ->  ( ps  <->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pw2f1odclem  6956  eluz  9696  elicc4  10097  s111  11123  divalgmodcl  12354  eqglact  13676  eqgid  13677  iscrng2  13892  issubrg3  14124  iscld2  14691  cncnp2m  14818  cnnei  14819  reopnap  15133  cnlimc  15259  2omap  16132  pw1map  16134
  Copyright terms: Public domain W3C validator