ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baibd Unicode version

Theorem baibd 925
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
baibd.1  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
Assertion
Ref Expression
baibd  |-  ( (
ph  /\  ch )  ->  ( ps  <->  th )
)

Proof of Theorem baibd
StepHypRef Expression
1 baibd.1 . 2  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
2 ibar 301 . . 3  |-  ( ch 
->  ( th  <->  ( ch  /\ 
th ) ) )
32bicomd 141 . 2  |-  ( ch 
->  ( ( ch  /\  th )  <->  th ) )
41, 3sylan9bb 462 1  |-  ( (
ph  /\  ch )  ->  ( ps  <->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pw2f1odclem  6933  eluz  9663  elicc4  10064  s111  11088  divalgmodcl  12272  eqglact  13594  eqgid  13595  iscrng2  13810  issubrg3  14042  iscld2  14609  cncnp2m  14736  cnnei  14737  reopnap  15051  cnlimc  15177  2omap  15969
  Copyright terms: Public domain W3C validator