ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reopnap Unicode version

Theorem reopnap 14706
Description: The real numbers apart from a given real number form an open set. (Contributed by Jim Kingdon, 13-Dec-2023.)
Assertion
Ref Expression
reopnap  |-  ( A  e.  RR  ->  { w  e.  RR  |  w #  A }  e.  ( topGen ` 
ran  (,) ) )
Distinct variable group:    w, A

Proof of Theorem reopnap
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elrabi 2913 . . . . 5  |-  ( x  e.  { w  e.  RR  |  w #  A }  ->  x  e.  RR )
21a1i 9 . . . 4  |-  ( A  e.  RR  ->  (
x  e.  { w  e.  RR  |  w #  A }  ->  x  e.  RR ) )
3 elun 3300 . . . . 5  |-  ( x  e.  ( ( -oo (,) A )  u.  ( A (,) +oo ) )  <-> 
( x  e.  ( -oo (,) A )  \/  x  e.  ( A (,) +oo )
) )
4 rexr 8065 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  RR* )
5 elioomnf 10034 . . . . . . . 8  |-  ( A  e.  RR*  ->  ( x  e.  ( -oo (,) A )  <->  ( x  e.  RR  /\  x  < 
A ) ) )
64, 5syl 14 . . . . . . 7  |-  ( A  e.  RR  ->  (
x  e.  ( -oo (,) A )  <->  ( x  e.  RR  /\  x  < 
A ) ) )
7 simpl 109 . . . . . . 7  |-  ( ( x  e.  RR  /\  x  <  A )  ->  x  e.  RR )
86, 7biimtrdi 163 . . . . . 6  |-  ( A  e.  RR  ->  (
x  e.  ( -oo (,) A )  ->  x  e.  RR ) )
9 elioopnf 10033 . . . . . . . 8  |-  ( A  e.  RR*  ->  ( x  e.  ( A (,) +oo )  <->  ( x  e.  RR  /\  A  < 
x ) ) )
104, 9syl 14 . . . . . . 7  |-  ( A  e.  RR  ->  (
x  e.  ( A (,) +oo )  <->  ( x  e.  RR  /\  A  < 
x ) ) )
11 simpl 109 . . . . . . 7  |-  ( ( x  e.  RR  /\  A  <  x )  ->  x  e.  RR )
1210, 11biimtrdi 163 . . . . . 6  |-  ( A  e.  RR  ->  (
x  e.  ( A (,) +oo )  ->  x  e.  RR )
)
138, 12jaod 718 . . . . 5  |-  ( A  e.  RR  ->  (
( x  e.  ( -oo (,) A )  \/  x  e.  ( A (,) +oo )
)  ->  x  e.  RR ) )
143, 13biimtrid 152 . . . 4  |-  ( A  e.  RR  ->  (
x  e.  ( ( -oo (,) A )  u.  ( A (,) +oo ) )  ->  x  e.  RR ) )
15 reaplt 8607 . . . . . . 7  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( x #  A  <->  ( x  <  A  \/  A  < 
x ) ) )
1615ancoms 268 . . . . . 6  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( x #  A  <->  ( x  <  A  \/  A  < 
x ) ) )
17 breq1 4032 . . . . . . . 8  |-  ( w  =  x  ->  (
w #  A  <->  x #  A
) )
1817elrab 2916 . . . . . . 7  |-  ( x  e.  { w  e.  RR  |  w #  A } 
<->  ( x  e.  RR  /\  x #  A ) )
19 ibar 301 . . . . . . . 8  |-  ( x  e.  RR  ->  (
x #  A  <->  ( x  e.  RR  /\  x #  A
) ) )
2019adantl 277 . . . . . . 7  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( x #  A  <->  ( x  e.  RR  /\  x #  A
) ) )
2118, 20bitr4id 199 . . . . . 6  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( x  e.  {
w  e.  RR  |  w #  A }  <->  x #  A
) )
226baibd 924 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( x  e.  ( -oo (,) A )  <-> 
x  <  A )
)
2310baibd 924 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( x  e.  ( A (,) +oo )  <->  A  <  x ) )
2422, 23orbi12d 794 . . . . . . 7  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( ( x  e.  ( -oo (,) A
)  \/  x  e.  ( A (,) +oo ) )  <->  ( x  <  A  \/  A  < 
x ) ) )
253, 24bitrid 192 . . . . . 6  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( x  e.  ( ( -oo (,) A
)  u.  ( A (,) +oo ) )  <-> 
( x  <  A  \/  A  <  x ) ) )
2616, 21, 253bitr4d 220 . . . . 5  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( x  e.  {
w  e.  RR  |  w #  A }  <->  x  e.  ( ( -oo (,) A )  u.  ( A (,) +oo ) ) ) )
2726ex 115 . . . 4  |-  ( A  e.  RR  ->  (
x  e.  RR  ->  ( x  e.  { w  e.  RR  |  w #  A } 
<->  x  e.  ( ( -oo (,) A )  u.  ( A (,) +oo ) ) ) ) )
282, 14, 27pm5.21ndd 706 . . 3  |-  ( A  e.  RR  ->  (
x  e.  { w  e.  RR  |  w #  A } 
<->  x  e.  ( ( -oo (,) A )  u.  ( A (,) +oo ) ) ) )
2928eqrdv 2191 . 2  |-  ( A  e.  RR  ->  { w  e.  RR  |  w #  A }  =  ( ( -oo (,) A )  u.  ( A (,) +oo ) ) )
30 retop 14692 . . 3  |-  ( topGen ` 
ran  (,) )  e.  Top
31 mnfxr 8076 . . . 4  |- -oo  e.  RR*
32 iooretopg 14696 . . . 4  |-  ( ( -oo  e.  RR*  /\  A  e.  RR* )  ->  ( -oo (,) A )  e.  ( topGen `  ran  (,) )
)
3331, 4, 32sylancr 414 . . 3  |-  ( A  e.  RR  ->  ( -oo (,) A )  e.  ( topGen `  ran  (,) )
)
34 pnfxr 8072 . . . 4  |- +oo  e.  RR*
35 iooretopg 14696 . . . 4  |-  ( ( A  e.  RR*  /\ +oo  e.  RR* )  ->  ( A (,) +oo )  e.  ( topGen `  ran  (,) )
)
364, 34, 35sylancl 413 . . 3  |-  ( A  e.  RR  ->  ( A (,) +oo )  e.  ( topGen `  ran  (,) )
)
37 unopn 14173 . . 3  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( -oo (,) A )  e.  (
topGen `  ran  (,) )  /\  ( A (,) +oo )  e.  ( topGen ` 
ran  (,) ) )  -> 
( ( -oo (,) A )  u.  ( A (,) +oo ) )  e.  ( topGen `  ran  (,) ) )
3830, 33, 36, 37mp3an2i 1353 . 2  |-  ( A  e.  RR  ->  (
( -oo (,) A )  u.  ( A (,) +oo ) )  e.  (
topGen `  ran  (,) )
)
3929, 38eqeltrd 2270 1  |-  ( A  e.  RR  ->  { w  e.  RR  |  w #  A }  e.  ( topGen ` 
ran  (,) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    e. wcel 2164   {crab 2476    u. cun 3151   class class class wbr 4029   ran crn 4660   ` cfv 5254  (class class class)co 5918   RRcr 7871   +oocpnf 8051   -oocmnf 8052   RR*cxr 8053    < clt 8054   # cap 8600   (,)cioo 9954   topGenctg 12865   Topctop 14165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-xneg 9838  df-ioo 9958  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-topgen 12871  df-top 14166  df-bases 14211
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator