ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reopnap Unicode version

Theorem reopnap 15133
Description: The real numbers apart from a given real number form an open set. (Contributed by Jim Kingdon, 13-Dec-2023.)
Assertion
Ref Expression
reopnap  |-  ( A  e.  RR  ->  { w  e.  RR  |  w #  A }  e.  ( topGen ` 
ran  (,) ) )
Distinct variable group:    w, A

Proof of Theorem reopnap
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elrabi 2933 . . . . 5  |-  ( x  e.  { w  e.  RR  |  w #  A }  ->  x  e.  RR )
21a1i 9 . . . 4  |-  ( A  e.  RR  ->  (
x  e.  { w  e.  RR  |  w #  A }  ->  x  e.  RR ) )
3 elun 3322 . . . . 5  |-  ( x  e.  ( ( -oo (,) A )  u.  ( A (,) +oo ) )  <-> 
( x  e.  ( -oo (,) A )  \/  x  e.  ( A (,) +oo )
) )
4 rexr 8153 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  RR* )
5 elioomnf 10125 . . . . . . . 8  |-  ( A  e.  RR*  ->  ( x  e.  ( -oo (,) A )  <->  ( x  e.  RR  /\  x  < 
A ) ) )
64, 5syl 14 . . . . . . 7  |-  ( A  e.  RR  ->  (
x  e.  ( -oo (,) A )  <->  ( x  e.  RR  /\  x  < 
A ) ) )
7 simpl 109 . . . . . . 7  |-  ( ( x  e.  RR  /\  x  <  A )  ->  x  e.  RR )
86, 7biimtrdi 163 . . . . . 6  |-  ( A  e.  RR  ->  (
x  e.  ( -oo (,) A )  ->  x  e.  RR ) )
9 elioopnf 10124 . . . . . . . 8  |-  ( A  e.  RR*  ->  ( x  e.  ( A (,) +oo )  <->  ( x  e.  RR  /\  A  < 
x ) ) )
104, 9syl 14 . . . . . . 7  |-  ( A  e.  RR  ->  (
x  e.  ( A (,) +oo )  <->  ( x  e.  RR  /\  A  < 
x ) ) )
11 simpl 109 . . . . . . 7  |-  ( ( x  e.  RR  /\  A  <  x )  ->  x  e.  RR )
1210, 11biimtrdi 163 . . . . . 6  |-  ( A  e.  RR  ->  (
x  e.  ( A (,) +oo )  ->  x  e.  RR )
)
138, 12jaod 719 . . . . 5  |-  ( A  e.  RR  ->  (
( x  e.  ( -oo (,) A )  \/  x  e.  ( A (,) +oo )
)  ->  x  e.  RR ) )
143, 13biimtrid 152 . . . 4  |-  ( A  e.  RR  ->  (
x  e.  ( ( -oo (,) A )  u.  ( A (,) +oo ) )  ->  x  e.  RR ) )
15 reaplt 8696 . . . . . . 7  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( x #  A  <->  ( x  <  A  \/  A  < 
x ) ) )
1615ancoms 268 . . . . . 6  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( x #  A  <->  ( x  <  A  \/  A  < 
x ) ) )
17 breq1 4062 . . . . . . . 8  |-  ( w  =  x  ->  (
w #  A  <->  x #  A
) )
1817elrab 2936 . . . . . . 7  |-  ( x  e.  { w  e.  RR  |  w #  A } 
<->  ( x  e.  RR  /\  x #  A ) )
19 ibar 301 . . . . . . . 8  |-  ( x  e.  RR  ->  (
x #  A  <->  ( x  e.  RR  /\  x #  A
) ) )
2019adantl 277 . . . . . . 7  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( x #  A  <->  ( x  e.  RR  /\  x #  A
) ) )
2118, 20bitr4id 199 . . . . . 6  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( x  e.  {
w  e.  RR  |  w #  A }  <->  x #  A
) )
226baibd 925 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( x  e.  ( -oo (,) A )  <-> 
x  <  A )
)
2310baibd 925 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( x  e.  ( A (,) +oo )  <->  A  <  x ) )
2422, 23orbi12d 795 . . . . . . 7  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( ( x  e.  ( -oo (,) A
)  \/  x  e.  ( A (,) +oo ) )  <->  ( x  <  A  \/  A  < 
x ) ) )
253, 24bitrid 192 . . . . . 6  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( x  e.  ( ( -oo (,) A
)  u.  ( A (,) +oo ) )  <-> 
( x  <  A  \/  A  <  x ) ) )
2616, 21, 253bitr4d 220 . . . . 5  |-  ( ( A  e.  RR  /\  x  e.  RR )  ->  ( x  e.  {
w  e.  RR  |  w #  A }  <->  x  e.  ( ( -oo (,) A )  u.  ( A (,) +oo ) ) ) )
2726ex 115 . . . 4  |-  ( A  e.  RR  ->  (
x  e.  RR  ->  ( x  e.  { w  e.  RR  |  w #  A } 
<->  x  e.  ( ( -oo (,) A )  u.  ( A (,) +oo ) ) ) ) )
282, 14, 27pm5.21ndd 707 . . 3  |-  ( A  e.  RR  ->  (
x  e.  { w  e.  RR  |  w #  A } 
<->  x  e.  ( ( -oo (,) A )  u.  ( A (,) +oo ) ) ) )
2928eqrdv 2205 . 2  |-  ( A  e.  RR  ->  { w  e.  RR  |  w #  A }  =  ( ( -oo (,) A )  u.  ( A (,) +oo ) ) )
30 retop 15111 . . 3  |-  ( topGen ` 
ran  (,) )  e.  Top
31 mnfxr 8164 . . . 4  |- -oo  e.  RR*
32 iooretopg 15115 . . . 4  |-  ( ( -oo  e.  RR*  /\  A  e.  RR* )  ->  ( -oo (,) A )  e.  ( topGen `  ran  (,) )
)
3331, 4, 32sylancr 414 . . 3  |-  ( A  e.  RR  ->  ( -oo (,) A )  e.  ( topGen `  ran  (,) )
)
34 pnfxr 8160 . . . 4  |- +oo  e.  RR*
35 iooretopg 15115 . . . 4  |-  ( ( A  e.  RR*  /\ +oo  e.  RR* )  ->  ( A (,) +oo )  e.  ( topGen `  ran  (,) )
)
364, 34, 35sylancl 413 . . 3  |-  ( A  e.  RR  ->  ( A (,) +oo )  e.  ( topGen `  ran  (,) )
)
37 unopn 14592 . . 3  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( -oo (,) A )  e.  (
topGen `  ran  (,) )  /\  ( A (,) +oo )  e.  ( topGen ` 
ran  (,) ) )  -> 
( ( -oo (,) A )  u.  ( A (,) +oo ) )  e.  ( topGen `  ran  (,) ) )
3830, 33, 36, 37mp3an2i 1355 . 2  |-  ( A  e.  RR  ->  (
( -oo (,) A )  u.  ( A (,) +oo ) )  e.  (
topGen `  ran  (,) )
)
3929, 38eqeltrd 2284 1  |-  ( A  e.  RR  ->  { w  e.  RR  |  w #  A }  e.  ( topGen ` 
ran  (,) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    e. wcel 2178   {crab 2490    u. cun 3172   class class class wbr 4059   ran crn 4694   ` cfv 5290  (class class class)co 5967   RRcr 7959   +oocpnf 8139   -oocmnf 8140   RR*cxr 8141    < clt 8142   # cap 8689   (,)cioo 10045   topGenctg 13201   Topctop 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-xneg 9929  df-ioo 10049  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-topgen 13207  df-top 14585  df-bases 14630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator