ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqglact Unicode version

Theorem eqglact 13561
Description: A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x  |-  X  =  ( Base `  G
)
eqger.r  |-  .~  =  ( G ~QG  Y )
eqglact.3  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
eqglact  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  [ A ]  .~  =  ( ( x  e.  X  |->  ( A  .+  x ) ) " Y ) )
Distinct variable groups:    x,  .+    x,  .~    x, G    x, X    x, A    x, Y

Proof of Theorem eqglact
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 eqger.x . . . . . . 7  |-  X  =  ( Base `  G
)
2 eqid 2205 . . . . . . 7  |-  ( invg `  G )  =  ( invg `  G )
3 eqglact.3 . . . . . . 7  |-  .+  =  ( +g  `  G )
4 eqger.r . . . . . . 7  |-  .~  =  ( G ~QG  Y )
51, 2, 3, 4eqgval 13559 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( A  .~  x  <->  ( A  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 A )  .+  x )  e.  Y
) ) )
6 3anass 985 . . . . . 6  |-  ( ( A  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 A )  .+  x )  e.  Y
)  <->  ( A  e.  X  /\  ( x  e.  X  /\  (
( ( invg `  G ) `  A
)  .+  x )  e.  Y ) ) )
75, 6bitrdi 196 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
( A  .~  x  <->  ( A  e.  X  /\  ( x  e.  X  /\  ( ( ( invg `  G ) `
 A )  .+  x )  e.  Y
) ) ) )
87baibd 925 . . . 4  |-  ( ( ( G  e.  Grp  /\  Y  C_  X )  /\  A  e.  X
)  ->  ( A  .~  x  <->  ( x  e.  X  /\  ( ( ( invg `  G ) `  A
)  .+  x )  e.  Y ) ) )
983impa 1197 . . 3  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  ( A  .~  x  <->  ( x  e.  X  /\  (
( ( invg `  G ) `  A
)  .+  x )  e.  Y ) ) )
109abbidv 2323 . 2  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  { x  |  A  .~  x }  =  { x  |  ( x  e.  X  /\  ( ( ( invg `  G ) `  A
)  .+  x )  e.  Y ) } )
11 dfec2 6623 . . 3  |-  ( A  e.  X  ->  [ A ]  .~  =  { x  |  A  .~  x } )
12113ad2ant3 1023 . 2  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  [ A ]  .~  =  { x  |  A  .~  x } )
13 eqid 2205 . . . . . . . . 9  |-  ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) )  =  ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) )
1413, 1, 3, 2grplactcnv 13434 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) ) `  A ) : X -1-1-onto-> X  /\  `' ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x
) ) ) `  A )  =  ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x
) ) ) `  ( ( invg `  G ) `  A
) ) ) )
1514simprd 114 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  `' ( ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) ) `  A )  =  ( ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) ) `  ( ( invg `  G
) `  A )
) )
1613, 1grplactfval 13433 . . . . . . . . 9  |-  ( A  e.  X  ->  (
( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x
) ) ) `  A )  =  ( x  e.  X  |->  ( A  .+  x ) ) )
1716adantl 277 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x ) ) ) `
 A )  =  ( x  e.  X  |->  ( A  .+  x
) ) )
1817cnveqd 4854 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  `' ( ( g  e.  X  |->  ( x  e.  X  |->  ( g 
.+  x ) ) ) `  A )  =  `' ( x  e.  X  |->  ( A 
.+  x ) ) )
191, 2grpinvcl 13380 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( invg `  G ) `  A
)  e.  X )
2013, 1grplactfval 13433 . . . . . . . 8  |-  ( ( ( invg `  G ) `  A
)  e.  X  -> 
( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x ) ) ) `
 ( ( invg `  G ) `
 A ) )  =  ( x  e.  X  |->  ( ( ( invg `  G
) `  A )  .+  x ) ) )
2119, 20syl 14 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( g  e.  X  |->  ( x  e.  X  |->  ( g  .+  x ) ) ) `
 ( ( invg `  G ) `
 A ) )  =  ( x  e.  X  |->  ( ( ( invg `  G
) `  A )  .+  x ) ) )
2215, 18, 213eqtr3d 2246 . . . . . 6  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  `' ( x  e.  X  |->  ( A  .+  x ) )  =  ( x  e.  X  |->  ( ( ( invg `  G ) `
 A )  .+  x ) ) )
2322cnveqd 4854 . . . . 5  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  `' `' ( x  e.  X  |->  ( A  .+  x ) )  =  `' ( x  e.  X  |->  ( ( ( invg `  G
) `  A )  .+  x ) ) )
24233adant2 1019 . . . 4  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  `' `' ( x  e.  X  |->  ( A  .+  x ) )  =  `' ( x  e.  X  |->  ( ( ( invg `  G
) `  A )  .+  x ) ) )
2524imaeq1d 5021 . . 3  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  ( `' `' ( x  e.  X  |->  ( A  .+  x ) ) " Y )  =  ( `' ( x  e.  X  |->  ( ( ( invg `  G
) `  A )  .+  x ) ) " Y ) )
26 imacnvcnv 5147 . . 3  |-  ( `' `' ( x  e.  X  |->  ( A  .+  x ) ) " Y )  =  ( ( x  e.  X  |->  ( A  .+  x
) ) " Y
)
27 eqid 2205 . . . . 5  |-  ( x  e.  X  |->  ( ( ( invg `  G ) `  A
)  .+  x )
)  =  ( x  e.  X  |->  ( ( ( invg `  G ) `  A
)  .+  x )
)
2827mptpreima 5176 . . . 4  |-  ( `' ( x  e.  X  |->  ( ( ( invg `  G ) `
 A )  .+  x ) ) " Y )  =  {
x  e.  X  | 
( ( ( invg `  G ) `
 A )  .+  x )  e.  Y }
29 df-rab 2493 . . . 4  |-  { x  e.  X  |  (
( ( invg `  G ) `  A
)  .+  x )  e.  Y }  =  {
x  |  ( x  e.  X  /\  (
( ( invg `  G ) `  A
)  .+  x )  e.  Y ) }
3028, 29eqtri 2226 . . 3  |-  ( `' ( x  e.  X  |->  ( ( ( invg `  G ) `
 A )  .+  x ) ) " Y )  =  {
x  |  ( x  e.  X  /\  (
( ( invg `  G ) `  A
)  .+  x )  e.  Y ) }
3125, 26, 303eqtr3g 2261 . 2  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  (
( x  e.  X  |->  ( A  .+  x
) ) " Y
)  =  { x  |  ( x  e.  X  /\  ( ( ( invg `  G ) `  A
)  .+  x )  e.  Y ) } )
3210, 12, 313eqtr4d 2248 1  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  A  e.  X )  ->  [ A ]  .~  =  ( ( x  e.  X  |->  ( A  .+  x ) ) " Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   {cab 2191   {crab 2488    C_ wss 3166   class class class wbr 4044    |-> cmpt 4105   `'ccnv 4674   "cima 4678   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5944   [cec 6618   Basecbs 12832   +g cplusg 12909   Grpcgrp 13332   invgcminusg 13333   ~QG cqg 13505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-ec 6622  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-eqg 13508
This theorem is referenced by:  eqgen  13563
  Copyright terms: Public domain W3C validator