| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqglact | Unicode version | ||
| Description: A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| Ref | Expression |
|---|---|
| eqger.x |
|
| eqger.r |
|
| eqglact.3 |
|
| Ref | Expression |
|---|---|
| eqglact |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqger.x |
. . . . . . 7
| |
| 2 | eqid 2196 |
. . . . . . 7
| |
| 3 | eqglact.3 |
. . . . . . 7
| |
| 4 | eqger.r |
. . . . . . 7
| |
| 5 | 1, 2, 3, 4 | eqgval 13429 |
. . . . . 6
|
| 6 | 3anass 984 |
. . . . . 6
| |
| 7 | 5, 6 | bitrdi 196 |
. . . . 5
|
| 8 | 7 | baibd 924 |
. . . 4
|
| 9 | 8 | 3impa 1196 |
. . 3
|
| 10 | 9 | abbidv 2314 |
. 2
|
| 11 | dfec2 6604 |
. . 3
| |
| 12 | 11 | 3ad2ant3 1022 |
. 2
|
| 13 | eqid 2196 |
. . . . . . . . 9
| |
| 14 | 13, 1, 3, 2 | grplactcnv 13304 |
. . . . . . . 8
|
| 15 | 14 | simprd 114 |
. . . . . . 7
|
| 16 | 13, 1 | grplactfval 13303 |
. . . . . . . . 9
|
| 17 | 16 | adantl 277 |
. . . . . . . 8
|
| 18 | 17 | cnveqd 4843 |
. . . . . . 7
|
| 19 | 1, 2 | grpinvcl 13250 |
. . . . . . . 8
|
| 20 | 13, 1 | grplactfval 13303 |
. . . . . . . 8
|
| 21 | 19, 20 | syl 14 |
. . . . . . 7
|
| 22 | 15, 18, 21 | 3eqtr3d 2237 |
. . . . . 6
|
| 23 | 22 | cnveqd 4843 |
. . . . 5
|
| 24 | 23 | 3adant2 1018 |
. . . 4
|
| 25 | 24 | imaeq1d 5009 |
. . 3
|
| 26 | imacnvcnv 5135 |
. . 3
| |
| 27 | eqid 2196 |
. . . . 5
| |
| 28 | 27 | mptpreima 5164 |
. . . 4
|
| 29 | df-rab 2484 |
. . . 4
| |
| 30 | 28, 29 | eqtri 2217 |
. . 3
|
| 31 | 25, 26, 30 | 3eqtr3g 2252 |
. 2
|
| 32 | 10, 12, 31 | 3eqtr4d 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-ec 6603 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-eqg 13378 |
| This theorem is referenced by: eqgen 13433 |
| Copyright terms: Public domain | W3C validator |