| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqglact | Unicode version | ||
| Description: A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| Ref | Expression |
|---|---|
| eqger.x |
|
| eqger.r |
|
| eqglact.3 |
|
| Ref | Expression |
|---|---|
| eqglact |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqger.x |
. . . . . . 7
| |
| 2 | eqid 2205 |
. . . . . . 7
| |
| 3 | eqglact.3 |
. . . . . . 7
| |
| 4 | eqger.r |
. . . . . . 7
| |
| 5 | 1, 2, 3, 4 | eqgval 13559 |
. . . . . 6
|
| 6 | 3anass 985 |
. . . . . 6
| |
| 7 | 5, 6 | bitrdi 196 |
. . . . 5
|
| 8 | 7 | baibd 925 |
. . . 4
|
| 9 | 8 | 3impa 1197 |
. . 3
|
| 10 | 9 | abbidv 2323 |
. 2
|
| 11 | dfec2 6623 |
. . 3
| |
| 12 | 11 | 3ad2ant3 1023 |
. 2
|
| 13 | eqid 2205 |
. . . . . . . . 9
| |
| 14 | 13, 1, 3, 2 | grplactcnv 13434 |
. . . . . . . 8
|
| 15 | 14 | simprd 114 |
. . . . . . 7
|
| 16 | 13, 1 | grplactfval 13433 |
. . . . . . . . 9
|
| 17 | 16 | adantl 277 |
. . . . . . . 8
|
| 18 | 17 | cnveqd 4854 |
. . . . . . 7
|
| 19 | 1, 2 | grpinvcl 13380 |
. . . . . . . 8
|
| 20 | 13, 1 | grplactfval 13433 |
. . . . . . . 8
|
| 21 | 19, 20 | syl 14 |
. . . . . . 7
|
| 22 | 15, 18, 21 | 3eqtr3d 2246 |
. . . . . 6
|
| 23 | 22 | cnveqd 4854 |
. . . . 5
|
| 24 | 23 | 3adant2 1019 |
. . . 4
|
| 25 | 24 | imaeq1d 5021 |
. . 3
|
| 26 | imacnvcnv 5147 |
. . 3
| |
| 27 | eqid 2205 |
. . . . 5
| |
| 28 | 27 | mptpreima 5176 |
. . . 4
|
| 29 | df-rab 2493 |
. . . 4
| |
| 30 | 28, 29 | eqtri 2226 |
. . 3
|
| 31 | 25, 26, 30 | 3eqtr3g 2261 |
. 2
|
| 32 | 10, 12, 31 | 3eqtr4d 2248 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-ec 6622 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-minusg 13336 df-eqg 13508 |
| This theorem is referenced by: eqgen 13563 |
| Copyright terms: Public domain | W3C validator |