ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgid Unicode version

Theorem eqgid 13763
Description: The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x  |-  X  =  ( Base `  G
)
eqger.r  |-  .~  =  ( G ~QG  Y )
eqgid.3  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
eqgid  |-  ( Y  e.  (SubGrp `  G
)  ->  [  .0.  ]  .~  =  Y )

Proof of Theorem eqgid
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 subgrcl 13716 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
2 eqger.r . . . . . 6  |-  .~  =  ( G ~QG  Y )
32releqgg 13757 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  (SubGrp `  G
) )  ->  Rel  .~  )
41, 3mpancom 422 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  Rel  .~  )
5 relelec 6722 . . . 4  |-  ( Rel 
.~  ->  ( x  e. 
[  .0.  ]  .~  <->  .0. 
.~  x ) )
64, 5syl 14 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  [  .0.  ]  .~  <->  .0. 
.~  x ) )
71adantr 276 . . . . . . . . 9  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  G  e.  Grp )
8 eqgid.3 . . . . . . . . . 10  |-  .0.  =  ( 0g `  G )
9 eqid 2229 . . . . . . . . . 10  |-  ( invg `  G )  =  ( invg `  G )
108, 9grpinvid 13593 . . . . . . . . 9  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  =  .0.  )
117, 10syl 14 . . . . . . . 8  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( invg `  G ) `  .0.  )  =  .0.  )
1211oveq1d 6016 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( invg `  G ) `  .0.  ) ( +g  `  G
) x )  =  (  .0.  ( +g  `  G ) x ) )
13 eqger.x . . . . . . . . 9  |-  X  =  ( Base `  G
)
14 eqid 2229 . . . . . . . . 9  |-  ( +g  `  G )  =  ( +g  `  G )
1513, 14, 8grplid 13564 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  (  .0.  ( +g  `  G ) x )  =  x )
161, 15sylan 283 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (  .0.  ( +g  `  G
) x )  =  x )
1712, 16eqtrd 2262 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( invg `  G ) `  .0.  ) ( +g  `  G
) x )  =  x )
1817eleq1d 2298 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( ( invg `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y  <->  x  e.  Y ) )
1918pm5.32da 452 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( (
x  e.  X  /\  ( ( ( invg `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y
)  <->  ( x  e.  X  /\  x  e.  Y ) ) )
2013subgss 13711 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
2113, 8grpidcl 13562 . . . . . 6  |-  ( G  e.  Grp  ->  .0.  e.  X )
221, 21syl 14 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  .0.  e.  X )
2313, 9, 14, 2eqgval 13760 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
(  .0.  .~  x  <->  (  .0.  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y
) ) )
24 3anass 1006 . . . . . . 7  |-  ( (  .0.  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y
)  <->  (  .0.  e.  X  /\  ( x  e.  X  /\  ( ( ( invg `  G ) `  .0.  ) ( +g  `  G
) x )  e.  Y ) ) )
2523, 24bitrdi 196 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
(  .0.  .~  x  <->  (  .0.  e.  X  /\  ( x  e.  X  /\  ( ( ( invg `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y
) ) ) )
2625baibd 928 . . . . 5  |-  ( ( ( G  e.  Grp  /\  Y  C_  X )  /\  .0.  e.  X )  ->  (  .0.  .~  x 
<->  ( x  e.  X  /\  ( ( ( invg `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y
) ) )
271, 20, 22, 26syl21anc 1270 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  (  .0.  .~  x  <->  ( x  e.  X  /\  ( ( ( invg `  G ) `  .0.  ) ( +g  `  G
) x )  e.  Y ) ) )
2820sseld 3223 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  Y  ->  x  e.  X ) )
2928pm4.71rd 394 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  Y  <->  ( x  e.  X  /\  x  e.  Y ) ) )
3019, 27, 293bitr4d 220 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  (  .0.  .~  x  <->  x  e.  Y
) )
316, 30bitrd 188 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  [  .0.  ]  .~  <->  x  e.  Y ) )
3231eqrdv 2227 1  |-  ( Y  e.  (SubGrp `  G
)  ->  [  .0.  ]  .~  =  Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200    C_ wss 3197   class class class wbr 4083   Rel wrel 4724   ` cfv 5318  (class class class)co 6001   [cec 6678   Basecbs 13032   +g cplusg 13110   0gc0g 13289   Grpcgrp 13533   invgcminusg 13534  SubGrpcsubg 13704   ~QG cqg 13706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-ec 6682  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-subg 13707  df-eqg 13709
This theorem is referenced by:  eqg0el  13766
  Copyright terms: Public domain W3C validator