ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgid Unicode version

Theorem eqgid 13117
Description: The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x  |-  X  =  ( Base `  G
)
eqger.r  |-  .~  =  ( G ~QG  Y )
eqgid.3  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
eqgid  |-  ( Y  e.  (SubGrp `  G
)  ->  [  .0.  ]  .~  =  Y )

Proof of Theorem eqgid
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 subgrcl 13070 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
2 eqger.r . . . . . 6  |-  .~  =  ( G ~QG  Y )
32releqgg 13111 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  (SubGrp `  G
) )  ->  Rel  .~  )
41, 3mpancom 422 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  Rel  .~  )
5 relelec 6588 . . . 4  |-  ( Rel 
.~  ->  ( x  e. 
[  .0.  ]  .~  <->  .0. 
.~  x ) )
64, 5syl 14 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  [  .0.  ]  .~  <->  .0. 
.~  x ) )
71adantr 276 . . . . . . . . 9  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  G  e.  Grp )
8 eqgid.3 . . . . . . . . . 10  |-  .0.  =  ( 0g `  G )
9 eqid 2187 . . . . . . . . . 10  |-  ( invg `  G )  =  ( invg `  G )
108, 9grpinvid 12956 . . . . . . . . 9  |-  ( G  e.  Grp  ->  (
( invg `  G ) `  .0.  )  =  .0.  )
117, 10syl 14 . . . . . . . 8  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( invg `  G ) `  .0.  )  =  .0.  )
1211oveq1d 5903 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( invg `  G ) `  .0.  ) ( +g  `  G
) x )  =  (  .0.  ( +g  `  G ) x ) )
13 eqger.x . . . . . . . . 9  |-  X  =  ( Base `  G
)
14 eqid 2187 . . . . . . . . 9  |-  ( +g  `  G )  =  ( +g  `  G )
1513, 14, 8grplid 12927 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  (  .0.  ( +g  `  G ) x )  =  x )
161, 15sylan 283 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (  .0.  ( +g  `  G
) x )  =  x )
1712, 16eqtrd 2220 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( invg `  G ) `  .0.  ) ( +g  `  G
) x )  =  x )
1817eleq1d 2256 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( ( ( invg `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y  <->  x  e.  Y ) )
1918pm5.32da 452 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( (
x  e.  X  /\  ( ( ( invg `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y
)  <->  ( x  e.  X  /\  x  e.  Y ) ) )
2013subgss 13065 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
2113, 8grpidcl 12925 . . . . . 6  |-  ( G  e.  Grp  ->  .0.  e.  X )
221, 21syl 14 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  .0.  e.  X )
2313, 9, 14, 2eqgval 13114 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
(  .0.  .~  x  <->  (  .0.  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y
) ) )
24 3anass 983 . . . . . . 7  |-  ( (  .0.  e.  X  /\  x  e.  X  /\  ( ( ( invg `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y
)  <->  (  .0.  e.  X  /\  ( x  e.  X  /\  ( ( ( invg `  G ) `  .0.  ) ( +g  `  G
) x )  e.  Y ) ) )
2523, 24bitrdi 196 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  C_  X )  -> 
(  .0.  .~  x  <->  (  .0.  e.  X  /\  ( x  e.  X  /\  ( ( ( invg `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y
) ) ) )
2625baibd 924 . . . . 5  |-  ( ( ( G  e.  Grp  /\  Y  C_  X )  /\  .0.  e.  X )  ->  (  .0.  .~  x 
<->  ( x  e.  X  /\  ( ( ( invg `  G ) `
 .0.  ) ( +g  `  G ) x )  e.  Y
) ) )
271, 20, 22, 26syl21anc 1247 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  (  .0.  .~  x  <->  ( x  e.  X  /\  ( ( ( invg `  G ) `  .0.  ) ( +g  `  G
) x )  e.  Y ) ) )
2820sseld 3166 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  Y  ->  x  e.  X ) )
2928pm4.71rd 394 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  Y  <->  ( x  e.  X  /\  x  e.  Y ) ) )
3019, 27, 293bitr4d 220 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  (  .0.  .~  x  <->  x  e.  Y
) )
316, 30bitrd 188 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  ( x  e.  [  .0.  ]  .~  <->  x  e.  Y ) )
3231eqrdv 2185 1  |-  ( Y  e.  (SubGrp `  G
)  ->  [  .0.  ]  .~  =  Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363    e. wcel 2158    C_ wss 3141   class class class wbr 4015   Rel wrel 4643   ` cfv 5228  (class class class)co 5888   [cec 6546   Basecbs 12475   +g cplusg 12550   0gc0g 12722   Grpcgrp 12898   invgcminusg 12899  SubGrpcsubg 13058   ~QG cqg 13060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1re 7918  ax-addrcl 7921
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-ec 6550  df-inn 8933  df-2 8991  df-ndx 12478  df-slot 12479  df-base 12481  df-plusg 12563  df-0g 12724  df-mgm 12793  df-sgrp 12826  df-mnd 12839  df-grp 12901  df-minusg 12902  df-subg 13061  df-eqg 13063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator