| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqgid | Unicode version | ||
| Description: The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| Ref | Expression |
|---|---|
| eqger.x |
|
| eqger.r |
|
| eqgid.3 |
|
| Ref | Expression |
|---|---|
| eqgid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgrcl 13309 |
. . . . 5
| |
| 2 | eqger.r |
. . . . . 6
| |
| 3 | 2 | releqgg 13350 |
. . . . 5
|
| 4 | 1, 3 | mpancom 422 |
. . . 4
|
| 5 | relelec 6634 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | 1 | adantr 276 |
. . . . . . . . 9
|
| 8 | eqgid.3 |
. . . . . . . . . 10
| |
| 9 | eqid 2196 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | grpinvid 13192 |
. . . . . . . . 9
|
| 11 | 7, 10 | syl 14 |
. . . . . . . 8
|
| 12 | 11 | oveq1d 5937 |
. . . . . . 7
|
| 13 | eqger.x |
. . . . . . . . 9
| |
| 14 | eqid 2196 |
. . . . . . . . 9
| |
| 15 | 13, 14, 8 | grplid 13163 |
. . . . . . . 8
|
| 16 | 1, 15 | sylan 283 |
. . . . . . 7
|
| 17 | 12, 16 | eqtrd 2229 |
. . . . . 6
|
| 18 | 17 | eleq1d 2265 |
. . . . 5
|
| 19 | 18 | pm5.32da 452 |
. . . 4
|
| 20 | 13 | subgss 13304 |
. . . . 5
|
| 21 | 13, 8 | grpidcl 13161 |
. . . . . 6
|
| 22 | 1, 21 | syl 14 |
. . . . 5
|
| 23 | 13, 9, 14, 2 | eqgval 13353 |
. . . . . . 7
|
| 24 | 3anass 984 |
. . . . . . 7
| |
| 25 | 23, 24 | bitrdi 196 |
. . . . . 6
|
| 26 | 25 | baibd 924 |
. . . . 5
|
| 27 | 1, 20, 22, 26 | syl21anc 1248 |
. . . 4
|
| 28 | 20 | sseld 3182 |
. . . . 5
|
| 29 | 28 | pm4.71rd 394 |
. . . 4
|
| 30 | 19, 27, 29 | 3bitr4d 220 |
. . 3
|
| 31 | 6, 30 | bitrd 188 |
. 2
|
| 32 | 31 | eqrdv 2194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-ec 6594 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-subg 13300 df-eqg 13302 |
| This theorem is referenced by: eqg0el 13359 |
| Copyright terms: Public domain | W3C validator |