| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqgid | Unicode version | ||
| Description: The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| Ref | Expression |
|---|---|
| eqger.x |
|
| eqger.r |
|
| eqgid.3 |
|
| Ref | Expression |
|---|---|
| eqgid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgrcl 13515 |
. . . . 5
| |
| 2 | eqger.r |
. . . . . 6
| |
| 3 | 2 | releqgg 13556 |
. . . . 5
|
| 4 | 1, 3 | mpancom 422 |
. . . 4
|
| 5 | relelec 6662 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | 1 | adantr 276 |
. . . . . . . . 9
|
| 8 | eqgid.3 |
. . . . . . . . . 10
| |
| 9 | eqid 2205 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | grpinvid 13392 |
. . . . . . . . 9
|
| 11 | 7, 10 | syl 14 |
. . . . . . . 8
|
| 12 | 11 | oveq1d 5959 |
. . . . . . 7
|
| 13 | eqger.x |
. . . . . . . . 9
| |
| 14 | eqid 2205 |
. . . . . . . . 9
| |
| 15 | 13, 14, 8 | grplid 13363 |
. . . . . . . 8
|
| 16 | 1, 15 | sylan 283 |
. . . . . . 7
|
| 17 | 12, 16 | eqtrd 2238 |
. . . . . 6
|
| 18 | 17 | eleq1d 2274 |
. . . . 5
|
| 19 | 18 | pm5.32da 452 |
. . . 4
|
| 20 | 13 | subgss 13510 |
. . . . 5
|
| 21 | 13, 8 | grpidcl 13361 |
. . . . . 6
|
| 22 | 1, 21 | syl 14 |
. . . . 5
|
| 23 | 13, 9, 14, 2 | eqgval 13559 |
. . . . . . 7
|
| 24 | 3anass 985 |
. . . . . . 7
| |
| 25 | 23, 24 | bitrdi 196 |
. . . . . 6
|
| 26 | 25 | baibd 925 |
. . . . 5
|
| 27 | 1, 20, 22, 26 | syl21anc 1249 |
. . . 4
|
| 28 | 20 | sseld 3192 |
. . . . 5
|
| 29 | 28 | pm4.71rd 394 |
. . . 4
|
| 30 | 19, 27, 29 | 3bitr4d 220 |
. . 3
|
| 31 | 6, 30 | bitrd 188 |
. 2
|
| 32 | 31 | eqrdv 2203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-ec 6622 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-minusg 13336 df-subg 13506 df-eqg 13508 |
| This theorem is referenced by: eqg0el 13565 |
| Copyright terms: Public domain | W3C validator |