ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnlimc Unicode version

Theorem cnlimc 15259
Description:  F is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
cnlimc  |-  ( A 
C_  CC  ->  ( F  e.  ( A -cn-> CC )  <->  ( F : A
--> CC  /\  A. x  e.  A  ( F `  x )  e.  ( F lim CC  x ) ) ) )
Distinct variable groups:    x, A    x, F

Proof of Theorem cnlimc
StepHypRef Expression
1 ssid 3221 . . . 4  |-  CC  C_  CC
2 eqid 2207 . . . . 5  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
3 eqid 2207 . . . . 5  |-  ( (
MetOpen `  ( abs  o.  -  ) )t  A )  =  ( ( MetOpen `  ( abs  o.  -  )
)t 
A )
42cntoptopon 15119 . . . . . 6  |-  ( MetOpen `  ( abs  o.  -  )
)  e.  (TopOn `  CC )
54toponrestid 14608 . . . . 5  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( (
MetOpen `  ( abs  o.  -  ) )t  CC )
62, 3, 5cncfcncntop 15180 . . . 4  |-  ( ( A  C_  CC  /\  CC  C_  CC )  ->  ( A -cn-> CC )  =  ( ( ( MetOpen `  ( abs  o.  -  ) )t  A )  Cn  ( MetOpen `  ( abs  o.  -  )
) ) )
71, 6mpan2 425 . . 3  |-  ( A 
C_  CC  ->  ( A
-cn-> CC )  =  ( ( ( MetOpen `  ( abs  o.  -  ) )t  A )  Cn  ( MetOpen `  ( abs  o.  -  )
) ) )
87eleq2d 2277 . 2  |-  ( A 
C_  CC  ->  ( F  e.  ( A -cn-> CC )  <->  F  e.  (
( ( MetOpen `  ( abs  o.  -  ) )t  A )  Cn  ( MetOpen `  ( abs  o.  -  )
) ) ) )
9 resttopon 14758 . . . 4  |-  ( ( ( MetOpen `  ( abs  o. 
-  ) )  e.  (TopOn `  CC )  /\  A  C_  CC )  ->  ( ( MetOpen `  ( abs  o.  -  )
)t 
A )  e.  (TopOn `  A ) )
104, 9mpan 424 . . 3  |-  ( A 
C_  CC  ->  ( (
MetOpen `  ( abs  o.  -  ) )t  A )  e.  (TopOn `  A
) )
11 cncnp 14817 . . 3  |-  ( ( ( ( MetOpen `  ( abs  o.  -  ) )t  A )  e.  (TopOn `  A )  /\  ( MetOpen
`  ( abs  o.  -  ) )  e.  (TopOn `  CC )
)  ->  ( F  e.  ( ( ( MetOpen `  ( abs  o.  -  )
)t 
A )  Cn  ( MetOpen
`  ( abs  o.  -  ) ) )  <-> 
( F : A --> CC  /\  A. x  e.  A  F  e.  ( ( ( ( MetOpen `  ( abs  o.  -  )
)t 
A )  CnP  ( MetOpen
`  ( abs  o.  -  ) ) ) `
 x ) ) ) )
1210, 4, 11sylancl 413 . 2  |-  ( A 
C_  CC  ->  ( F  e.  ( ( (
MetOpen `  ( abs  o.  -  ) )t  A )  Cn  ( MetOpen `  ( abs  o.  -  ) ) )  <->  ( F : A
--> CC  /\  A. x  e.  A  F  e.  ( ( ( (
MetOpen `  ( abs  o.  -  ) )t  A )  CnP  ( MetOpen `  ( abs  o.  -  ) ) ) `  x ) ) ) )
132, 3cnplimccntop 15257 . . . . . 6  |-  ( ( A  C_  CC  /\  x  e.  A )  ->  ( F  e.  ( (
( ( MetOpen `  ( abs  o.  -  ) )t  A )  CnP  ( MetOpen `  ( abs  o.  -  )
) ) `  x
)  <->  ( F : A
--> CC  /\  ( F `
 x )  e.  ( F lim CC  x
) ) ) )
1413baibd 925 . . . . 5  |-  ( ( ( A  C_  CC  /\  x  e.  A )  /\  F : A --> CC )  ->  ( F  e.  ( ( ( ( MetOpen `  ( abs  o. 
-  ) )t  A )  CnP  ( MetOpen `  ( abs  o.  -  ) ) ) `  x )  <-> 
( F `  x
)  e.  ( F lim
CC  x ) ) )
1514an32s 568 . . . 4  |-  ( ( ( A  C_  CC  /\  F : A --> CC )  /\  x  e.  A
)  ->  ( F  e.  ( ( ( (
MetOpen `  ( abs  o.  -  ) )t  A )  CnP  ( MetOpen `  ( abs  o.  -  ) ) ) `  x )  <-> 
( F `  x
)  e.  ( F lim
CC  x ) ) )
1615ralbidva 2504 . . 3  |-  ( ( A  C_  CC  /\  F : A --> CC )  -> 
( A. x  e.  A  F  e.  ( ( ( ( MetOpen `  ( abs  o.  -  )
)t 
A )  CnP  ( MetOpen
`  ( abs  o.  -  ) ) ) `
 x )  <->  A. x  e.  A  ( F `  x )  e.  ( F lim CC  x ) ) )
1716pm5.32da 452 . 2  |-  ( A 
C_  CC  ->  ( ( F : A --> CC  /\  A. x  e.  A  F  e.  ( ( ( (
MetOpen `  ( abs  o.  -  ) )t  A )  CnP  ( MetOpen `  ( abs  o.  -  ) ) ) `  x ) )  <->  ( F : A
--> CC  /\  A. x  e.  A  ( F `  x )  e.  ( F lim CC  x ) ) ) )
188, 12, 173bitrd 214 1  |-  ( A 
C_  CC  ->  ( F  e.  ( A -cn-> CC )  <->  ( F : A
--> CC  /\  A. x  e.  A  ( F `  x )  e.  ( F lim CC  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486    C_ wss 3174    o. ccom 4697   -->wf 5286   ` cfv 5290  (class class class)co 5967   CCcc 7958    - cmin 8278   abscabs 11423   ↾t crest 13186   MetOpencmopn 14418  TopOnctopon 14597    Cn ccn 14772    CnP ccnp 14773   -cn->ccncf 15157   lim CC climc 15241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-map 6760  df-pm 6761  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-rest 13188  df-topgen 13207  df-psmet 14420  df-xmet 14421  df-met 14422  df-bl 14423  df-mopn 14424  df-top 14585  df-topon 14598  df-bases 14630  df-cn 14775  df-cnp 14776  df-cncf 15158  df-limced 15243
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator