| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluz | Unicode version | ||
| Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
| Ref | Expression |
|---|---|
| eluz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz1 9654 |
. 2
| |
| 2 | 1 | baibd 925 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-cnex 8018 ax-resscn 8019 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-ov 5949 df-neg 8248 df-z 9375 df-uz 9651 |
| This theorem is referenced by: uzneg 9669 uztric 9672 uzm1 9681 eluzdc 9733 fzn 10166 fzsplit2 10174 fznn 10213 uzsplit 10216 elfz2nn0 10236 fzouzsplit 10305 exfzdc 10371 zsupcllemstep 10374 zsupcl 10376 infssuzex 10378 fzfig 10577 faclbnd 10888 seq3coll 10989 cvg1nlemcau 11328 cvg1nlemres 11329 summodclem2a 11725 fsum0diaglem 11784 mertenslemi1 11879 prodmodclem2a 11920 pcpremul 12649 pcdvdsb 12676 pcadd 12696 pcfac 12706 pcbc 12707 prmunb 12718 gsumfzval 13256 uzdcinzz 15771 |
| Copyright terms: Public domain | W3C validator |