Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluz | Unicode version |
Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
Ref | Expression |
---|---|
eluz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz1 9437 | . 2 | |
2 | 1 | baibd 909 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2128 class class class wbr 3965 cfv 5169 cle 7907 cz 9161 cuz 9433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-cnex 7817 ax-resscn 7818 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-ov 5824 df-neg 8043 df-z 9162 df-uz 9434 |
This theorem is referenced by: uzneg 9451 uztric 9454 uzm1 9463 eluzdc 9514 fzn 9937 fzsplit2 9945 fznn 9984 uzsplit 9987 elfz2nn0 10007 fzouzsplit 10071 exfzdc 10132 fzfig 10322 faclbnd 10608 seq3coll 10706 cvg1nlemcau 10877 cvg1nlemres 10878 summodclem2a 11271 fsum0diaglem 11330 mertenslemi1 11425 prodmodclem2a 11466 zsupcllemstep 11824 zsupcl 11826 infssuzex 11828 uzdcinzz 13343 |
Copyright terms: Public domain | W3C validator |