| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluz | Unicode version | ||
| Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
| Ref | Expression |
|---|---|
| eluz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz1 9652 |
. 2
| |
| 2 | 1 | baibd 925 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-cnex 8016 ax-resscn 8017 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-neg 8246 df-z 9373 df-uz 9649 |
| This theorem is referenced by: uzneg 9667 uztric 9670 uzm1 9679 eluzdc 9731 fzn 10164 fzsplit2 10172 fznn 10211 uzsplit 10214 elfz2nn0 10234 fzouzsplit 10303 exfzdc 10369 zsupcllemstep 10372 zsupcl 10374 infssuzex 10376 fzfig 10575 faclbnd 10886 seq3coll 10987 cvg1nlemcau 11295 cvg1nlemres 11296 summodclem2a 11692 fsum0diaglem 11751 mertenslemi1 11846 prodmodclem2a 11887 pcpremul 12616 pcdvdsb 12643 pcadd 12663 pcfac 12673 pcbc 12674 prmunb 12685 gsumfzval 13223 uzdcinzz 15734 |
| Copyright terms: Public domain | W3C validator |