| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluz | Unicode version | ||
| Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
| Ref | Expression |
|---|---|
| eluz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz1 9605 |
. 2
| |
| 2 | 1 | baibd 924 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-neg 8200 df-z 9327 df-uz 9602 |
| This theorem is referenced by: uzneg 9620 uztric 9623 uzm1 9632 eluzdc 9684 fzn 10117 fzsplit2 10125 fznn 10164 uzsplit 10167 elfz2nn0 10187 fzouzsplit 10255 exfzdc 10316 zsupcllemstep 10319 zsupcl 10321 infssuzex 10323 fzfig 10522 faclbnd 10833 seq3coll 10934 cvg1nlemcau 11149 cvg1nlemres 11150 summodclem2a 11546 fsum0diaglem 11605 mertenslemi1 11700 prodmodclem2a 11741 pcpremul 12462 pcdvdsb 12489 pcadd 12509 pcfac 12519 pcbc 12520 prmunb 12531 gsumfzval 13034 uzdcinzz 15444 |
| Copyright terms: Public domain | W3C validator |