Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluz | Unicode version |
Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
Ref | Expression |
---|---|
eluz |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz1 9466 | . 2 | |
2 | 1 | baibd 913 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2136 class class class wbr 3981 cfv 5187 cle 7930 cz 9187 cuz 9462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-cnex 7840 ax-resscn 7841 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-sbc 2951 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-ov 5844 df-neg 8068 df-z 9188 df-uz 9463 |
This theorem is referenced by: uzneg 9480 uztric 9483 uzm1 9492 eluzdc 9544 fzn 9973 fzsplit2 9981 fznn 10020 uzsplit 10023 elfz2nn0 10043 fzouzsplit 10110 exfzdc 10171 fzfig 10361 faclbnd 10650 seq3coll 10751 cvg1nlemcau 10922 cvg1nlemres 10923 summodclem2a 11318 fsum0diaglem 11377 mertenslemi1 11472 prodmodclem2a 11513 zsupcllemstep 11874 zsupcl 11876 infssuzex 11878 pcpremul 12221 pcdvdsb 12247 pcadd 12267 pcfac 12276 pcbc 12277 prmunb 12288 uzdcinzz 13639 |
Copyright terms: Public domain | W3C validator |