| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluz | Unicode version | ||
| Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
| Ref | Expression |
|---|---|
| eluz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz1 9726 |
. 2
| |
| 2 | 1 | baibd 928 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-neg 8320 df-z 9447 df-uz 9723 |
| This theorem is referenced by: uzneg 9741 uztric 9744 uzm1 9753 eluzdc 9805 fzn 10238 fzsplit2 10246 fznn 10285 uzsplit 10288 elfz2nn0 10308 fzouzsplit 10377 exfzdc 10446 zsupcllemstep 10449 zsupcl 10451 infssuzex 10453 fzfig 10652 faclbnd 10963 seq3coll 11064 cvg1nlemcau 11495 cvg1nlemres 11496 summodclem2a 11892 fsum0diaglem 11951 mertenslemi1 12046 prodmodclem2a 12087 pcpremul 12816 pcdvdsb 12843 pcadd 12863 pcfac 12873 pcbc 12874 prmunb 12885 gsumfzval 13424 uzdcinzz 16162 |
| Copyright terms: Public domain | W3C validator |