ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluz Unicode version

Theorem eluz 9663
Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.)
Assertion
Ref Expression
eluz  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  <->  M  <_  N ) )

Proof of Theorem eluz
StepHypRef Expression
1 eluz1 9654 . 2  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )
21baibd 925 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  <->  M  <_  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2176   class class class wbr 4045   ` cfv 5272    <_ cle 8110   ZZcz 9374   ZZ>=cuz 9650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-cnex 8018  ax-resscn 8019
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-ov 5949  df-neg 8248  df-z 9375  df-uz 9651
This theorem is referenced by:  uzneg  9669  uztric  9672  uzm1  9681  eluzdc  9733  fzn  10166  fzsplit2  10174  fznn  10213  uzsplit  10216  elfz2nn0  10236  fzouzsplit  10305  exfzdc  10371  zsupcllemstep  10374  zsupcl  10376  infssuzex  10378  fzfig  10577  faclbnd  10888  seq3coll  10989  cvg1nlemcau  11328  cvg1nlemres  11329  summodclem2a  11725  fsum0diaglem  11784  mertenslemi1  11879  prodmodclem2a  11920  pcpremul  12649  pcdvdsb  12676  pcadd  12696  pcfac  12706  pcbc  12707  prmunb  12718  gsumfzval  13256  uzdcinzz  15771
  Copyright terms: Public domain W3C validator