![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eluz | Unicode version |
Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
Ref | Expression |
---|---|
eluz |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz1 9013 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | baibd 870 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3955 ax-pow 4007 ax-pr 4034 ax-cnex 7426 ax-resscn 7427 |
This theorem depends on definitions: df-bi 115 df-3or 925 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-rab 2368 df-v 2621 df-sbc 2841 df-un 3003 df-in 3005 df-ss 3012 df-pw 3429 df-sn 3450 df-pr 3451 df-op 3453 df-uni 3652 df-br 3844 df-opab 3898 df-mpt 3899 df-id 4118 df-xp 4442 df-rel 4443 df-cnv 4444 df-co 4445 df-dm 4446 df-iota 4975 df-fun 5012 df-fv 5018 df-ov 5647 df-neg 7646 df-z 8741 df-uz 9010 |
This theorem is referenced by: uzneg 9027 uztric 9030 uzm1 9039 eluzdc 9087 fzn 9446 fzsplit2 9454 fznn 9491 uzsplit 9494 elfz2nn0 9514 fzouzsplit 9578 exfzdc 9639 fzfig 9825 faclbnd 10137 iseqcoll 10235 cvg1nlemcau 10405 cvg1nlemres 10406 isummolem2a 10758 fsum0diaglem 10821 mertenslemi1 10916 zsupcllemstep 11206 zsupcl 11208 infssuzex 11210 uzdcinzz 11581 |
Copyright terms: Public domain | W3C validator |