ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluz Unicode version

Theorem eluz 9475
Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.)
Assertion
Ref Expression
eluz  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  <->  M  <_  N ) )

Proof of Theorem eluz
StepHypRef Expression
1 eluz1 9466 . 2  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  M )  <->  ( N  e.  ZZ  /\  M  <_  N ) ) )
21baibd 913 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  M )  <->  M  <_  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   class class class wbr 3981   ` cfv 5187    <_ cle 7930   ZZcz 9187   ZZ>=cuz 9462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-cnex 7840  ax-resscn 7841
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-rab 2452  df-v 2727  df-sbc 2951  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-iota 5152  df-fun 5189  df-fv 5195  df-ov 5844  df-neg 8068  df-z 9188  df-uz 9463
This theorem is referenced by:  uzneg  9480  uztric  9483  uzm1  9492  eluzdc  9544  fzn  9973  fzsplit2  9981  fznn  10020  uzsplit  10023  elfz2nn0  10043  fzouzsplit  10110  exfzdc  10171  fzfig  10361  faclbnd  10650  seq3coll  10751  cvg1nlemcau  10922  cvg1nlemres  10923  summodclem2a  11318  fsum0diaglem  11377  mertenslemi1  11472  prodmodclem2a  11513  zsupcllemstep  11874  zsupcl  11876  infssuzex  11878  pcpremul  12221  pcdvdsb  12247  pcadd  12267  pcfac  12276  pcbc  12277  prmunb  12288  uzdcinzz  13639
  Copyright terms: Public domain W3C validator