ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnnei Unicode version

Theorem cnnei 14819
Description: Continuity in terms of neighborhoods. (Contributed by Thierry Arnoux, 3-Jan-2018.)
Hypotheses
Ref Expression
cnnei.x  |-  X  = 
U. J
cnnei.y  |-  Y  = 
U. K
Assertion
Ref Expression
cnnei  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  -> 
( F  e.  ( J  Cn  K )  <->  A. p  e.  X  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
Distinct variable groups:    v, p, w, F    J, p, v, w    K, p, v, w    X, p, v, w    Y, p, v, w

Proof of Theorem cnnei
StepHypRef Expression
1 cnnei.x . . . . . 6  |-  X  = 
U. J
21toptopon 14605 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
3 cnnei.y . . . . . 6  |-  Y  = 
U. K
43toptopon 14605 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
52, 4anbi12i 460 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  <->  ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
) )
6 cncnp 14817 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. p  e.  X  F  e.  ( ( J  CnP  K ) `  p ) ) ) )
76baibd 925 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( F  e.  ( J  Cn  K )  <->  A. p  e.  X  F  e.  ( ( J  CnP  K ) `  p ) ) )
85, 7sylanb 284 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  F : X --> Y )  ->  ( F  e.  ( J  Cn  K
)  <->  A. p  e.  X  F  e.  ( ( J  CnP  K ) `  p ) ) )
95anbi1i 458 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  F : X --> Y )  <-> 
( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y ) )
10 iscnp4 14805 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  p  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  p )  <-> 
( F : X --> Y  /\  A. w  e.  ( ( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) ) )
11103expa 1206 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  p  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  p )  <->  ( F : X --> Y  /\  A. w  e.  ( ( nei `  K ) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) ) )
1211baibd 925 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  p  e.  X )  /\  F : X --> Y )  ->  ( F  e.  ( ( J  CnP  K ) `  p )  <->  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
1312an32s 568 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  p  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  p )  <->  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
149, 13sylanb 284 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  F : X
--> Y )  /\  p  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  p )  <->  A. w  e.  ( ( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
1514ralbidva 2504 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  F : X --> Y )  ->  ( A. p  e.  X  F  e.  ( ( J  CnP  K ) `  p )  <->  A. p  e.  X  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
168, 15bitrd 188 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  F : X --> Y )  ->  ( F  e.  ( J  Cn  K
)  <->  A. p  e.  X  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
17163impa 1197 1  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  -> 
( F  e.  ( J  Cn  K )  <->  A. p  e.  X  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487    C_ wss 3174   {csn 3643   U.cuni 3864   "cima 4696   -->wf 5286   ` cfv 5290  (class class class)co 5967   Topctop 14584  TopOnctopon 14597   neicnei 14725    Cn ccn 14772    CnP ccnp 14773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-topgen 13207  df-top 14585  df-topon 14598  df-ntr 14683  df-nei 14726  df-cn 14775  df-cnp 14776
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator