ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnnei Unicode version

Theorem cnnei 12987
Description: Continuity in terms of neighborhoods. (Contributed by Thierry Arnoux, 3-Jan-2018.)
Hypotheses
Ref Expression
cnnei.x  |-  X  = 
U. J
cnnei.y  |-  Y  = 
U. K
Assertion
Ref Expression
cnnei  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  -> 
( F  e.  ( J  Cn  K )  <->  A. p  e.  X  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
Distinct variable groups:    v, p, w, F    J, p, v, w    K, p, v, w    X, p, v, w    Y, p, v, w

Proof of Theorem cnnei
StepHypRef Expression
1 cnnei.x . . . . . 6  |-  X  = 
U. J
21toptopon 12771 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
3 cnnei.y . . . . . 6  |-  Y  = 
U. K
43toptopon 12771 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
52, 4anbi12i 457 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  <->  ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
) )
6 cncnp 12985 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. p  e.  X  F  e.  ( ( J  CnP  K ) `  p ) ) ) )
76baibd 918 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( F  e.  ( J  Cn  K )  <->  A. p  e.  X  F  e.  ( ( J  CnP  K ) `  p ) ) )
85, 7sylanb 282 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  F : X --> Y )  ->  ( F  e.  ( J  Cn  K
)  <->  A. p  e.  X  F  e.  ( ( J  CnP  K ) `  p ) ) )
95anbi1i 455 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  F : X --> Y )  <-> 
( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y ) )
10 iscnp4 12973 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  p  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  p )  <-> 
( F : X --> Y  /\  A. w  e.  ( ( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) ) )
11103expa 1198 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  p  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  p )  <->  ( F : X --> Y  /\  A. w  e.  ( ( nei `  K ) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) ) )
1211baibd 918 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  p  e.  X )  /\  F : X --> Y )  ->  ( F  e.  ( ( J  CnP  K ) `  p )  <->  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
1312an32s 563 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  p  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  p )  <->  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
149, 13sylanb 282 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  F : X
--> Y )  /\  p  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  p )  <->  A. w  e.  ( ( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
1514ralbidva 2466 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  F : X --> Y )  ->  ( A. p  e.  X  F  e.  ( ( J  CnP  K ) `  p )  <->  A. p  e.  X  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
168, 15bitrd 187 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  F : X --> Y )  ->  ( F  e.  ( J  Cn  K
)  <->  A. p  e.  X  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
17163impa 1189 1  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  -> 
( F  e.  ( J  Cn  K )  <->  A. p  e.  X  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449    C_ wss 3121   {csn 3581   U.cuni 3794   "cima 4612   -->wf 5192   ` cfv 5196  (class class class)co 5851   Topctop 12750  TopOnctopon 12763   neicnei 12893    Cn ccn 12940    CnP ccnp 12941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-map 6625  df-topgen 12589  df-top 12751  df-topon 12764  df-ntr 12851  df-nei 12894  df-cn 12943  df-cnp 12944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator