ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnnei Unicode version

Theorem cnnei 14906
Description: Continuity in terms of neighborhoods. (Contributed by Thierry Arnoux, 3-Jan-2018.)
Hypotheses
Ref Expression
cnnei.x  |-  X  = 
U. J
cnnei.y  |-  Y  = 
U. K
Assertion
Ref Expression
cnnei  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  -> 
( F  e.  ( J  Cn  K )  <->  A. p  e.  X  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
Distinct variable groups:    v, p, w, F    J, p, v, w    K, p, v, w    X, p, v, w    Y, p, v, w

Proof of Theorem cnnei
StepHypRef Expression
1 cnnei.x . . . . . 6  |-  X  = 
U. J
21toptopon 14692 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
3 cnnei.y . . . . . 6  |-  Y  = 
U. K
43toptopon 14692 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
52, 4anbi12i 460 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  <->  ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
) )
6 cncnp 14904 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. p  e.  X  F  e.  ( ( J  CnP  K ) `  p ) ) ) )
76baibd 928 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( F  e.  ( J  Cn  K )  <->  A. p  e.  X  F  e.  ( ( J  CnP  K ) `  p ) ) )
85, 7sylanb 284 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  F : X --> Y )  ->  ( F  e.  ( J  Cn  K
)  <->  A. p  e.  X  F  e.  ( ( J  CnP  K ) `  p ) ) )
95anbi1i 458 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  F : X --> Y )  <-> 
( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y ) )
10 iscnp4 14892 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  p  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  p )  <-> 
( F : X --> Y  /\  A. w  e.  ( ( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) ) )
11103expa 1227 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  p  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  p )  <->  ( F : X --> Y  /\  A. w  e.  ( ( nei `  K ) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) ) )
1211baibd 928 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  p  e.  X )  /\  F : X --> Y )  ->  ( F  e.  ( ( J  CnP  K ) `  p )  <->  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
1312an32s 568 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  p  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  p )  <->  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
149, 13sylanb 284 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  K  e.  Top )  /\  F : X
--> Y )  /\  p  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  p )  <->  A. w  e.  ( ( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
1514ralbidva 2526 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  F : X --> Y )  ->  ( A. p  e.  X  F  e.  ( ( J  CnP  K ) `  p )  <->  A. p  e.  X  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
168, 15bitrd 188 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  F : X --> Y )  ->  ( F  e.  ( J  Cn  K
)  <->  A. p  e.  X  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
17163impa 1218 1  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  F : X --> Y )  -> 
( F  e.  ( J  Cn  K )  <->  A. p  e.  X  A. w  e.  (
( nei `  K
) `  { ( F `  p ) } ) E. v  e.  ( ( nei `  J
) `  { p } ) ( F
" v )  C_  w ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   {csn 3666   U.cuni 3888   "cima 4722   -->wf 5314   ` cfv 5318  (class class class)co 6001   Topctop 14671  TopOnctopon 14684   neicnei 14812    Cn ccn 14859    CnP ccnp 14860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-topgen 13293  df-top 14672  df-topon 14685  df-ntr 14770  df-nei 14813  df-cn 14862  df-cnp 14863
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator